Math 214 Assignments

Spring Semester, 2002


Assignments are listed according to the date due.
Fri., Jun. 1:A Follow-Up Assignment (also available asPDF [or DVI] for printing)
-- which is strictly optional reading.
Fri., May. 10: Final Examination 3:30 - 5:30

Office Hours on May 9:
    10:00 - 11:00
    3:00 - 4:00
Wed., May. 8: Last Quiz and
Review Session: Bring questions.
Mon., May. 6: 952: 26, 52
1022: 27, 28, 31, 33
Fri., May. 3: 778: 38
872: 40, 63
951: 24, 28, 30
1021: 24, 27, 28
Wed., May. 1: 1009: 39, 40
1017: 24, 26
Review exercises from end-of-chapter “Proficiency Examinations”:
722: 36, 39, 42
777: 29
871: 33, 36
Mon., Apr. 29: 1009: 26, 31, 36
1017: 11, 15, 20
and the following:
Evaluate the integral of the vector field
F(x, y, z) = (3 x, 4 y, 5 z)
over the each of the following surfaces:
  1. the first octant portion of the plane x + y + z = 1 .
  2. the sphere x^2 + y^2 + z^2 = 4 .
  3. the hemisphere x^2 + y^2 + z^2 = 4, z > 0 .
Fri., Apr. 26: Read § 14.7
1001: 41
1009: 20, 24
1017: 1, 6, 11
Wed., Apr. 24: 1001: 28, 30, 31, 38
1009: 10, 15, 17
Mon., Apr. 22: 993: 24, 27, 30
1001: 20, 24, 26, 29
1009: 1, 7
Fri., Apr. 19: Read § 14.6
981: 26, 32, 36
993: 13, 17, 21, 22
1001: 12, 16
Wed., Apr. 17: Read § 14.5
948: 43
974: 21, 28, 35, 40
981: 13, 20
993: 7
Mon., Apr. 15: Read § 14.4
948: 37, 39
965: 46, 53
974: 10, 12, 19
981: 4, 9, 11
Fri., Apr. 12: Read § 14.3
948: 20, 21, 33
965: 18, 24, 29, 35, 39
974: 3, 8
Wed., Apr. 10: Reading §§ 14.1 - 14.2
923: 40
933: 44
942: 34, 38
948: 4, 7, 11, 19
965: 9, 14
Mon., Apr. 8: Reading: §§ 13.7 - 13.8
921: 22, 24, 29, 34
932: 26, 33, 42
942: 31
Fri., Apr. 5: Quiz
Reading: § 13.6
912: 43, 44
921: 8, 13, 17
931: 5, 8, 13
Wed., Apr. 3: Reading § 13.5
903: 19, 33
912: 12, 40 - 42
921: 3
Mon., Apr. 1: No Class -- Recess ends at 12:20
RecessWed. - Fri., Mar. 27- 29
Mon., Mar. 25: Reading: § 13.4
895: 35, 38, 41, 54, 61
903: 10, 12, 13
912: 1
Fri., Mar. 22: Quiz
887: 17, 38
895: 15, 19, 24, 31
903: 2, 6
Wed., Mar. 20: Reading § 13.3
887: 3, 7, 14, 21
895: 3, 7, 13
Mon., Mar. 18: Reading: §§ 13.1 - 13.2
868: 9, 10, 18, 21, 41
Fri., Mar. 15: Midterm Test
Thu., Mar. 14: No class. I will not be available except at times by email. The course assistant Mr. Garg will be available 11:10 - 12:55 in the tutoring room, ES 138 (which is not normally a resource for Calculus III), and from 1:00 - 2:20 in his office, ES 147.
Wed., Mar. 13: Bring Review Questions.
Mon., Mar. 11: Reading: § 12.8
846: 37, 39, 42 -44
858: 18, 22, 25, 27, 35, 36, 40
868: 15, 20
Note: For the exercises on p. 868 make use of the fact that the gradient of an objective function must be parallel to the gradient of the equation of the constraint set when that set is a hypersurface (i.e., a point on the line, a curve in the plane, a surface in space, ...) at any point where a (relative) constrained extreme value occurs. Why? (also available as PDF)
Fri., Mar. 8: Quiz
Reading: § 12.7
834: 47 - 50
846: 10, 13, 16, 18, 23, 27, 33
Wed., Mar. 6: Reading: § 12.6
825: 32
832: 5, 8, 10, 14, 20, 24
Mon., Mar. 4: Reading: § 12.5
815: 39, 41, 45, 48
825: 1, 6, 8, 23, 29
Fri., Feb. 22: Quiz
Reading: § 12.4
815: 27-29, 31, 33-35, 38
Wed., Feb. 20: Read § 12.3
722: 4, 6, 11, 18, 22
778: 38, 43, 50
815: 13, 20, 26
Mon., Feb. 18:University Recess
Fri., Feb. 15: Read § 12.1-12.2
720: 13, 17, 24;
775: 11, 14, 18
Wed., Feb. 13: Read § 11.5
715: 10, 11, 16, 41, 43;
720: 3, 9;
767: 40;
775: 5, 7
Mon., Feb. 11: Read § 10.6
767: 27 - 29, 32, 39
715: 5, 8, 13, 17, 21, 22, 27, 39
Fri., Feb. 8: Read § 10.5
767: 3, 11, 12, 14, 15, 18, 20, 24
Quiz
Wed., Feb. 6: Read § 11.4
746: 13-15, 19, 20, 31, 35, 38, 47, 51;
Mon., Feb. 4: Read § 11.3;
703: 27, 29-31, 35, 39, 40, 50;
735: 9, 15, 20, 23, 26;
746: 1, 5, 7
Fri., Feb. 1: Read §§ 11.1-11.2;
694: 40 - 43, 47;
703: 7, 8, 14, 18, 22;
and prove the following:
Proposition.
For two given non-zero vectors show that one is a scalar multiple of the other if the absolute value of their dot product is equal to the product of their lengths.
Suggestion:
If v and w are given vectors what might a Calculus I student be able to say about the graph of the function f(x) = || v - x w||2 ?
Wed., Jan. 30: Read § 10.4;
684: 33, 36, 41;
694: 6, 9, 13, 14, 16 - 18, 23, 24, 37 - 39
Mon., Jan. 28: Read § 10.3;
674: 42, 54;
684: 3, 6, 10, 13, 24, 29
Fri., Jan. 25: Read §§ 10.1-10.2;
674: 2, 5, 9, 15, 17, 21, 25, 37
Wed., Jan. 23:First Meeting: No Assignment


UP  |   TOP  |   Department