Due Wednesday, October 17

1. Let f be a linear map from \mathbb{R}^3 to \mathbb{R}^3 for which

 (a) $f(1, 0, 0) = (1, 2, 3)$.
 (b) $f(0, 1/2, 0) = (3, 2, 1)$.
 (c) $f(-1, 0, 2) = (4, -6, 2)$.

 Find all possible 3×3 matrices A for which the formula $f(x) = Ax$ is valid for all x in \mathbb{R}^3.

 Hint: Use the rules for abstract linearity to work out what happens under f to $(0, 1, 0)$ and $(0, 0, 1)$.

2. Let g be the linear map from \mathbb{R}^4 to \mathbb{R}^4 that is defined by $g(x) = Bx$ where B is the matrix

 $\begin{pmatrix}
 1 & 2 & -4 & 3 \\
 -2 & -1 & -1 & 5 \\
 1 & 3 & 2 & -1 \\
 1 & 1 & -1 & -1
 \end{pmatrix}$.

 Find a 4×4 matrix C for which the linear map h given by multiplication by C has the property that both $h(g(x)) = x$ and $g(h(y)) = y$ for all x and all y in \mathbb{R}^4.

3. Could the previous exercise have been completed successfully if the given matrix B had been one of the matrices appearing in the assignment due Friday, October 12\(^1\)?

\(^1\)URI: http://math.albany.edu:8000/math/pers/hammond/course/mat220/assgt/la011015.html