Ph.D. Preliminary Examination
 Complex Analysis

August 26, 1994

1. Find an explicit conformal map from the region

$$
\{z:|z|<1\}-\{x \in \mathbf{R}: x \leq 0\}
$$

onto the upper halfplane $\{\operatorname{Im} z>0\}$.
2. Find the explicit Laurent series of the function

$$
f(z)=\frac{1}{z(z-3)}
$$

on the annulus $\{z: 1<|z-1|<2\}$ centered at 1 .
3. Let $D \subset \mathbf{C}$ be open and connected, and fix $z_{0} \in D$; set $A\left(D, z_{0}\right)=\left\{\left|f^{\prime}\left(z_{0}\right)\right|: f\right.$ holomorphic on D and $|f(z)|<1$ for $z \in D\}$. Prove that $A\left(D, z_{0}\right)$ is a compact subset of \mathbf{R}. What is $A\left(\mathbf{C}, z_{0}\right)$?
4. Let f be holomorphic in the connected region $\Omega \subset \mathbf{C}$, and assume that there exists a nonempty open set $U \subset \Omega$, such that $|f(z)|=1$ for all $z \in U$. Show that f is constant in Ω.
5. Suppose $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is holomorphic on the closed unit disc. Prove that

$$
\int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{2} d \theta=2 \pi \sum_{n=0}^{\infty}\left|a_{n}\right|^{2}
$$

6. Suppose h is holomorphic in a neighborhood of $\{z:|z| \leq R\}$, and that $h(z) \neq 0$ for $|z|=R$.
(a) Use the Theorem of Residues to show that

$$
\oint_{|z|=R} \frac{h^{\prime}(z)}{h(z)} d z=2 \pi i Z_{R}(h)
$$

where $Z_{R}(h)$ is the number of zeroes of h in $\{|z|<R\}$, counted with multiplicities.
(b) Use (a) to prove that if f and g satisfy the same hypotheses as h, and if

$$
|f-g|<|f| \text { on }\{|z|=R\},
$$

then $Z_{R}(f)=Z_{R}(g)$.
7. Use the Theorem of Residues for appropriate contours to evaluate

$$
\int_{-\infty}^{\infty} \frac{\sqrt{x+i}}{1+x^{2}} d x
$$

where on $\{\operatorname{Im} z>0\}$, we choose the branch of $\sqrt{z+i}$ whose value at 0 is $e^{\pi i / 4}$. Describe your method carefully, and include verification of all relevant limit statements.
8. Find an explicit series representation for a meromorphic function on \mathbf{C}, which is holomorphic on $\mathbf{C}-\{1,2,3, \ldots\}$, and which has at each point $z=n \in \mathbf{N}$ a simple pole with residue n. Include proofs of all required convergence statements.
9. Prove that all holomorphic automorphisms of \mathbf{C} (i.e. holomorphic maps $f: \mathbf{C} \rightarrow \mathbf{C}$ which are one-to-one and onto) are precisely the linear functions $f(z)=a+b z$ for arbitrary $a, b \in \mathbf{C}$.

