1. Let A be an $n \times n$ matrix with entries in the field \mathbb{C} of complex numbers that satisfies the relation $A^2 = A$. Show that A is similar to a diagonal matrix which has only 0’s and 1’s along the diagonal.

2. Furnish examples of the following:
 (a) A finite group that is solvable but not abelian.
 (b) A finite group whose center is a proper subgroup of order 2.
 (c) A nested sequence of finite groups G, H, K with H a normal subgroup of G and K a normal subgroup of H such that K is not a normal subgroup of G.

3. Let p be the polynomial $p(t) = t^5 + t^2 + 1$ regarded as an element of the ring $A = \mathbb{F}_2[t]$ of polynomials with coefficients in the field \mathbb{F}_2 of two elements. Show that p is irreducible, and then find a polynomial of degree at most 4 with the property that its residue class modulo the ideal pA generates the entire multiplicative group of units in the quotient ring A/pA.

4. Let G be a finite group of order N, and let n be a positive integer that divides N. Do one of the following:
 (a) Prove that if G is abelian, then G contains a subgroup of order n.
 (b) Find an example of G, N, n as above where G has no subgroup of order n.

5. Show that every group of order 30 contains a normal cyclic subgroup of order 15.

6. Let F be the field $\mathbb{Q}(i)$ where $i = \sqrt{-1} \in \mathbb{C}$, and let E be the splitting field over F of the polynomial $f(t) = t^4 - 5$. Find:
 (a) the extension degree $[E : F]$.
 (b) the group $\text{Aut}_F(E)$ of all automorphisms of E that fix F.

7. Let \mathbb{F}_2 be the field of 2 elements, and let R be the commutative ring
 $$R = \mathbb{F}_2[t]/t^3\mathbb{F}_2[t].$$
 (a) How many elements does R contain?
 (b) What is the characteristic of R?
 (c) Find all ring homomorphisms $R \rightarrow R$.

8. Let a, b, c, d be elements of a field F, let A, B, C, D be $n \times n$ matrices over F, and let
 $$m = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \text{and} \quad M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}.$$
 If $\lambda : F^2 \rightarrow F^2$ and $\Lambda : F^{2n} \rightarrow F^{2n}$ denote the linear endomorphisms corresponding (relative to standard coordinates) to m and M, respectively, then to what linear endomorphism that may be constructed from λ and Λ may one relate the $4n \times 4n$ (Kronecker product) matrix
 $$\begin{pmatrix} aA & bA & aB & bB \\ cA & dA & cB & dB \\ aC & bC & aD & bD \\ cC & dC & cD & dD \end{pmatrix}.$$
 Explain your answer.