Blaschke Sets for Bergman Spaces

by Boris Korenblum

AbSTRACT.: We characterize subsets S of the open unit disk D such that every zero sequence for a Bergman space $A^{p}, p>0$, with elements in S is Blaschke.

1. Introduction.

The following definition is an extension of the notion of a Blaschke set introduced by Krzysztof Bogdan [B].
Definition: We call $S \subset \mathbf{D}$ a Blaschke set for a class X of analytic functions on $\mathbf{D}=$ $\{z \in \mathbf{C}:|z|<1\}$ if
(i) whenever $0 \not \equiv f \in X$, and $\left\{z_{n}\right\}_{n}$ are the zeros of f (counting multiplicities), with $z_{n} \in S$, the Blaschke condition holds:

$$
\begin{equation*}
\sum_{n}\left(1-\left|z_{n}\right|\right)<\infty \tag{1}
\end{equation*}
$$

(ii) whenever $Z=\left\{z_{n}\right\}_{n}$ is a Blaschke sequence (i.e. (1) holds), with $z_{n} \in S$, there is an $f \in X$ whose zero sequence is Z.

REMARK: If X is made up of functions of bounded Nevanlinna characteric then this definition reduces to (ii). If $H^{\infty} \subset X$, it reduces to (i).

EXAMPLES:

1. Every subset of \mathbf{D} is a Blaschke set for $H^{p}, 0<p<\infty$.
2. For analytic Lipschitz classes $\operatorname{Lip}_{\alpha}(\mathbf{D}), \alpha>0$, as well as for $A^{\infty}=\left\{f: f^{(n)} \in\right.$ $\left.H^{\infty}, \forall n \geq 0\right\}$, Blaschke sets are characterized by

$$
\begin{equation*}
\int_{0}^{2 \pi} \log \operatorname{dist}\left(e^{i t}, S\right) d t>-\infty \tag{2}
\end{equation*}
$$

where dist denotes the Euclidean distance. Note that for $\operatorname{Lip}_{\alpha}(\mathbf{D})$ and A^{∞} the zero sequences Z are characterized by (1) and (2), with S replaced by Z.
3. The Blaschke sets S for the class \mathcal{D} of analytic functions with finite Dirichlet integral are characterized by (2) (see [B]). Note that \mathcal{D}-zero sequences cannot be described this way because there are $f \in \mathcal{D}$ whose zeros come arbitrarily close to every point of $\partial \mathbf{D}$ (see [C] and [SS]).

1991 Mathematics Subject Classification, Primary 30C15

The purpose of this paper is to obtain a description of the Blaschke sets for Bergman spaces $A^{p}(p>0)$ and growth spaces $A^{-\alpha}(\alpha>0)$. Recall that A^{p} consists of functions f analytic on \mathbf{D} such that

$$
\|f\|_{p}^{p}=\int_{\mathbf{D}}|f(z)|^{p} \frac{d x d y}{\pi}<\infty
$$

$A^{-\alpha}$ consists of analytic functions f with

$$
\|f\|_{-\alpha}=\sup \left\{(1-|z|)^{\alpha}|f(z)|: z \in \mathbf{D}\right\}<\infty
$$

We also consider the space $A^{-\infty}=\bigcup_{\alpha>0} A^{-\alpha}=\bigcup_{p>0} A^{p}$.
We establish the following
Theorem. A set $S \subset \mathbf{D}$ is a Blaschke set for any of the spaces $A^{p}, A^{-\alpha}, A^{-\infty}$ if and only if (2) holds.

To prove this theorem we first reduce condition (2) to a form involving a collection of disjoint "tents" tightly surrounding S. The sufficiency of (2) then follows from the fact that "Stolz stars" \mathcal{S}_{F} are $A^{-\infty}$-Blaschke sets if the entropy $\hat{\kappa}(F)$ is finite (see (3) and [HKZ]). To prove the necessity of (2) we use some density concepts first introduced in [K1] and later refined in $[\mathrm{S}]$ and [HKZ].
Acknowledgement: The suthor thanks Stefan Richter and Carl Sundberg for useful discussions. Special thanks are due to Carl Sundberg for bringing K. Bogdan's work [B] to the author's attention.

2. An equivalent form of (2).

We assume that S contains a disk centered at 0 of radius $1 / \sqrt{2}$.
We need some terminology.
A tent is an open subset h of \mathbf{D} bounded by an arc $I \subset \partial \mathbf{D}$ of length less than $\pi / 2$ and two straight lines through the endpoints of I forming with I an angle of $\pi / 4$. The closed arc \bar{I} will be called the base of the tent $h=h_{I}$. A tent h is said to support S if $h \cap S=\phi$ but $\bar{h} \cap \bar{S} \neq \phi$. A finite or countable collection of tents $\left\{h_{n}\right\}_{n}$ is a belt if h_{n} are pairwise disjoint and $\bigcup_{n} \bar{h}_{n} \supset \partial \mathbf{D}$. A collection of tents $\left\{h_{n}\right\}_{n}$ is an $\underline{S \text {-belt }}$ if h_{n} are pairwise disjoint, S-supporting, and $\bigcup_{n} \bar{h}_{n} \supset \partial \mathbf{D} \backslash \bar{S}$. Note that an S-belt does not have to be a belt. If S is such that $\partial \mathbf{D} \backslash \bar{S} \neq \phi, S$-belts exist: to obtain one we start at an arbitrary point $\zeta_{0} \in \partial \mathbf{D} \backslash \bar{S}$ and, moving counterclockwise, consecutively find points $\zeta_{1}, \zeta_{2} \ldots$ such that the arcs between them are the bases of S-supporting tents; then we proceed similarly from ζ_{0} in the opposite direction. We thus obtain a system of tents whose bases cover a
component of $G=\partial \mathbf{D} \backslash \bar{S}$. Continuing this process for all the components we obtain an S-belt.

An elementary computation shows that if $h=h_{I}$ is a tent supporting S then

$$
-|I| \log \frac{1}{|I|}-c|I| \leq \int_{I} \log \operatorname{dist}(\zeta, S)|d \zeta| \leq-|I| \log \frac{1}{|I|}+c|I|
$$

where c is a numerical constant. We thus obtain
Lemma 1. Let S be a subset of \mathbf{D} such that $\partial \mathbf{D} \backslash \bar{S} \neq \phi$. Let $\left\{h_{I_{n}}\right\}_{n}$ be an S-belt. Then (2) holds if and only if
(A) the set $F_{0}=\bar{S} \cap \partial \mathbf{D}$ has zero Lebesgue length;
(B)

$$
\sum_{n} \kappa\left(I_{n}\right)<\infty \text { where } \kappa(I)=|I| \log \frac{2 \pi e}{|I|}
$$

($\kappa(I)$ is called the κ length of I).
Note that (A) and (B) together are equivalent to

$$
\begin{equation*}
\hat{\kappa}(F)=\int_{\partial \mathbf{D}} \log \frac{2 \pi}{d(\zeta, F)}|d \zeta|<\infty \tag{3}
\end{equation*}
$$

where $F=F_{0} \cup \Xi$ and Ξ consists of the endpoints of those bases such that $\bar{I}_{n} \subset G ; d$ denotes the angular distance.

The quantity $\hat{\kappa}(F)$ is defined for all sets $F \subset \partial \mathbf{D}$ and is called the entropy of F. Closed sets with finite entropy are called Beurling-Carleson sets.

3. Sufficiency of (3).

Let $\Xi_{1} \supset \Xi$ consist of all endpoints of the bases I_{n} (including those that are in F_{0}). Pick an increasing sequence $F_{1} \subset F_{2} \subset \ldots$ of finite subsets of Ξ_{1} such that $\bigcup_{n} F_{n}=\Xi_{1}$. Then (3) implies

$$
\lim _{n \rightarrow \infty} \hat{\kappa}\left(F_{n}\right)=\hat{\kappa}(F)
$$

Each F_{n} determines a belt whose tents are based on complementary arcs of F_{n}. Let H_{n} be the union of these tents. (Note that some of these tents are not S-supporting because they contain ponts from S). The complement $\mathbf{D} \backslash H_{n}=\tau_{n}$ is a "Stolz Star", i.e. the union of Stolz angles with vertices in F_{n} and apertures of $\pi / 2$.

Since $\hat{\kappa}\left(F_{n}\right)$ are bounded, it follows that, whenever $0 \not \equiv f \in A^{-\infty}$, the Blaschke sums for those zeros of f lying in τ_{n} are bounded (see [HKZ], p. 118, Theorem 4.25). We have $\sum_{n} \tau_{n} \supset S$ and $\tau_{1} \subset \tau_{2} \subset \ldots$, which implies that the Blaschke sum for the zeros of f lying in S is finite.

4. Necessity of (3).

Suppose now that $\hat{\kappa}(F)=\infty$. Given an arbitrary fixed $p>0$ we are going to construct a sequence $Z=\left\{z_{n}\right\}_{n}, z_{n} \in S$, such that Z is an A^{p}-zero sequence but $\sum\left(1-\left|z_{n}\right|\right)=\infty$. In addition to the standard tools of $A^{-\infty}$-theory (density notions, premeasures, etc.) we will use some technical lemmas whose proofs are deferred to section 5 .

Recall that $F=F_{0} \cup \Xi$ where $F_{0}=\bar{S} \cap \partial \mathbf{D}$ and Ξ is a finite or countable set lying in $G=\partial \mathbf{D} \backslash F_{0}$. The cluster points (if any) of Ξ are in F_{0}.

We consider separately two cases depending on whether $\hat{\kappa}\left(F_{0}\right)$ is infinite or finite.
CASE 1: $\hat{\kappa}\left(F_{0}\right)=\infty$. By Lemma 2, s.5, there is a sequence $\left\{\zeta_{\nu}\right\}_{1}^{\infty}$ of distinct points in F_{0} such that the corresponding arcs $\left\{J_{\nu}\right\}_{1}^{\infty}$ between ζ_{ν} and $\zeta_{\nu+1}$ are pairwise disjoint, cover $\partial \mathbf{D}$, i.e. $\bigcup_{\nu} \bar{J}_{\nu}=\partial \mathbf{D}$, and $\hat{\kappa}\left(\left\{\zeta_{\nu}\right\}\right)=\infty$, which is equivalent to

$$
\sum_{\nu=1}^{\infty} \kappa\left(J_{\nu}\right)=\sum_{\nu=1}^{\infty}\left|J_{\nu}\right| \log \frac{2 \pi e}{\left|J_{\nu}\right|}=\infty
$$

(Note that $\lim _{\nu \rightarrow \infty} \zeta_{\nu}=\zeta_{1}$). Construct a premeasure (see [K1], [K2], [HKZ]) $d \mu=p|d \zeta|-d \sigma$ whose positive part has the density

$$
p(\zeta)=\log \frac{2 \pi}{d\left(\zeta,\left\{\zeta_{\nu}, \zeta_{\nu+1}\right\}\right)}, \zeta \in J_{\nu}, \nu \geq 1
$$

and the negative singular part $-d \sigma$ puts on every point ζ_{ν} a Dirac mass equal to $-\kappa\left(J_{\nu}\right)$. Although both positive and negative parts are infinite on $\partial \mathbf{D}, d \mu$ is κ-bounded above, which means that there is a constant $c>0$ such that for all arcs $I \subset \partial \mathbf{D}$

$$
\mu(I) \leq c|I| \log \frac{2 \pi e}{|I|}
$$

This enables us to consider a zero-free analytic function

$$
f_{\varepsilon}(z)=\exp \left\{\varepsilon \int_{\partial \mathbf{D}} \frac{\zeta+z}{\zeta-z} d \mu(\zeta)\right\}
$$

which is in A^{p} (or $A^{-\alpha}$) provided that $\varepsilon>0$ is sufficiently small, and p (or α) are arbitary but fixed positive numbers.

Now we use Lemma 3, s.5, to reduce all the singular masses at ζ_{ν} by a factor $1 / 2$ and compensate for that by extra zeros of high multiplicity at $z_{\nu} \in S$. We can ensure that the resulting function Φ is in A^{p}. The zeros z_{ν} of ϕ (counting multiplicities) form a non-Blaschke sequence of points from S (see Lemma 3 for details).

CASE 2: $\hat{\kappa}\left(F_{0}\right)<\infty$. Then we must have $\hat{\kappa}(\Xi)=\infty$. Recall that Ξ includes all the endpoint of the base arcs of the S-belt that are in $G=\partial \mathbf{D} \backslash \bar{S}$. Let $\left\{J_{\nu}\right\}_{\nu}$ be the sequence of these arcs arranged by decreasing lengths. Then $\hat{\kappa}\left(F_{0}\right)<\infty$ together with $\hat{\kappa}(\Xi)=\infty$ yield

$$
\sum_{\nu=1}^{\infty} \kappa\left(J_{\nu}\right)=\sum_{\nu=1}^{\infty}\left|J_{\nu}\right| \log \frac{2 \pi e}{\left|I_{\nu}\right|}=\infty
$$

It is always possible to find a decreasing sequence $1>\lambda_{1}>\lambda_{2}>\ldots \rightarrow 0$ such that

$$
\sum_{\nu=1}^{\infty} \lambda_{\nu} \kappa\left(J_{\nu}\right)=\infty
$$

Every \bar{J}_{ν} is the base of a tent $h_{J_{\nu}}$ that supports S; therefore there is at least one common point, say w_{ν}, in $\bar{S}, \bar{h}_{J_{\nu}}$ and \mathbf{D}. Take every w_{ν} and repeat it $\left[\frac{\lambda_{\nu} \kappa\left(J_{\nu}\right)}{1-\left|w_{\nu}\right|}\right]$ times. Let the resulting sequence be $Z=\left\{z_{k}\right\}_{k}$.
CLAIM: Z is a zero sequence for every $A^{p}, p>0$. To prove the claim we employ the notion of upper asymptotic κ-density of a sequence in \mathbf{D}. There are several equivalent definitions of this density. We will use the definition based on radial stars (see [HKZ]):

For an arbitrary finite set $M \subset \partial \mathbf{D}$ let r_{M} denote the union of radii from 0 to points in M. If $A=\left\{a_{k}\right\}_{k}$ is any sequence of points in \mathbf{D}, we form the partial Blaschke sum for A and $r_{\mathcal{M}}$:

$$
B\left(A, r_{M}\right)=\sum_{\kappa}\left\{1-\left|a_{k}\right|: a_{k} \in r_{M}\right\}
$$

and define

$$
\begin{equation*}
D^{+}(A)=\limsup _{\hat{\kappa}(M) \rightarrow \infty} \frac{B\left(A, r_{M}\right)}{\hat{\kappa}(M)} \tag{4}
\end{equation*}
$$

where $\lim \sup$ is taken over all finite $M \subset \partial \mathbf{D}$.
The following result, although short of a full characterization of A^{p}-zero sets, is sharp enough for our purposes.

Proposition. (See [HKZ], p.130, Theorem 4.37). Let $A=\left\{a_{\kappa}\right\}_{k}$ be a sequence of points in \mathbf{D} and $\mathbf{D}^{+}(A)$ be the upper asymptotic κ-density of A. If $D^{+}(A)<\frac{1}{p}$ then A is an A^{p}-zero sequence. If $D^{+}(A)>\frac{1}{p}$ then A is not an A^{p}-zero sequence.

REMARK: This is a sharper version, due to Kristian Seip [S], of a simiilar but weaker result from [K1].

Now we can prove the claim by showing that $D^{+}(Z)=0$. Let $Q=\left\{q_{\nu}=\frac{w_{\nu}}{\left|w_{\nu}\right|}\right\}_{\nu}$. Every arc J_{ν} contains exactly one point from Q, namely q_{ν}. Obviously, for computing
$D^{+}(Z)$ we can employ only those M that are finite subsets of Q. For such M we have

$$
B\left(Z, r_{M}\right) \leq \sum_{\nu}\left\{\lambda_{\nu} \kappa\left(J_{\nu}\right): q_{\nu} \in M\right\}
$$

and

$$
\hat{\kappa}(M) \geq \sum_{\nu}\left\{\kappa\left(J_{\nu}\right): q_{\nu} \in M\right\}
$$

(see Lemma 4, s.5). Therefore

$$
\frac{B\left(Z, r_{M}\right)}{\hat{\kappa}(M)} \leq \sum_{\nu}\left\{\lambda_{\nu} \kappa\left(J_{\nu}\right): q_{\nu} \in M\right\} / \sum_{\nu}\left\{\kappa\left(J_{\nu}\right): q_{\nu} \in M\right\} .
$$

It is convenient to use the following notations:

$$
\begin{aligned}
K(M) & =\sum_{\nu}\left\{\kappa\left(J_{\nu}\right): q_{\nu} \in M\right\}, \\
K_{\lambda}(M) & =\sum_{\nu}\left\{\lambda_{\nu} \kappa\left(J_{\nu}\right): q_{\nu} \in M\right\} .
\end{aligned}
$$

Let $\left\{M_{n}\right\}_{n}$ be a sequence of subsets of Q such that $\hat{\kappa}\left(M_{n}\right) \rightarrow \infty$. Then we have

$$
\begin{equation*}
\frac{B\left(Z, r_{M_{n}}\right)}{\hat{\kappa}\left(M_{n}\right)} \leq \frac{K_{\lambda}\left(M_{n}\right)}{K\left(M_{n}\right)} . \tag{5}
\end{equation*}
$$

Suppose that $K\left(M_{n}\right)=\mathcal{O}(1)(n \rightarrow \infty)$. Then obviously the left-hand side of (5) tends to 0 . Also, if $K\left(M_{n}\right) \rightarrow \infty$, then the right-hand (and, with it, the left-hand) side of (5) tends to 0 because $\lambda_{\nu} \downarrow 0$. Therefore every sequence $\left\{M_{n}\right\}, M_{n} \subset Q, \hat{\kappa}\left(M_{n}\right) \rightarrow \infty$, contains a subsequence $\left\{M_{n_{k}}\right\}=\left\{M_{k}^{\prime}\right\}, n_{1}<n_{2} \ldots$, such that

$$
\lim _{k \rightarrow 0} \frac{B\left(Z, r_{M_{k}^{\prime}}\right)}{\hat{\kappa}\left(M_{k}^{\prime}\right)}=0
$$

which implies $D^{+}(Z)=0$. Thus we have obtained a non-Blaschke A^{p}-zero sequence $\left\{z_{k}\right\}$ whose elements are in \bar{S}. Using how Lemma 5 , s.5, we can replace z_{k} by nearby points \tilde{z}_{k} from S so that the new sequence $\left\{\tilde{z}_{k}\right\}_{k}$ is still an A^{p}-zero sequence and non-Blaschke. This completes the proof of the Theorem.

5. Technical Lemma.

We give below the statement of the technical lemmas we used in proving the Theorem, together with a brief outline of their proofs.

Definition: A sequence $\left\{\zeta_{n}\right\}_{1}^{\infty}$ of distinct points in $\partial \mathbf{D}$ is called \mathbf{T}-monotone if the open $\operatorname{arcs} I_{n}$ between ζ_{n} and ζ_{n+1} are pairwise disjoint and $\bigcup_{n} \bar{I}=\partial \mathbf{D}$. Note that it follows from this definition that $\lim _{n \rightarrow \infty} \zeta_{\infty}=\zeta_{1}$.

Lemma 2. Every closed set $F \subset \partial \mathbf{D}$ of infinite entropy contains a T-monotone sequence $\left\{\zeta_{n}\right\}_{n} \subset F$ of infinite entropy.

Proof: We have

$$
\hat{\kappa}(F)=\int_{\partial \mathbf{D}} \log \frac{2 \pi}{d(\zeta, F)}|d \zeta|=\infty
$$

(d denotes the angular distance). By the Heine-Borel lemma there is a point $\zeta_{0} \in F$ such that every open arc J containing ζ_{0} has the property

$$
\int_{J} \log \frac{2 \pi}{d(\zeta, F)}|d \zeta|=\infty
$$

Now we can find a nested system of open arcs such that $J_{\kappa} \supset \bar{J}_{n+1}, \bigcap_{n} I_{n}=\left\{\zeta_{0}\right\}$, and a finite set $M_{k} \subset\left(J_{n} \backslash \bar{J}_{n+1}\right) \cap F$ such that

$$
\int_{J_{n} \backslash \bar{J}_{n+1}} \log \frac{2 \pi}{d\left(\zeta, M_{n}\right)}|d \zeta| \geq 1, n \geq 1
$$

Taking the union $E=\bigcup_{n} M_{n}$ (or a suitable subset of E) and rearranging it in a sequence will prove the Lemma.

LEMMA 3. Let $f \in A^{p}(p>0)$ have an "atomic singularity" at $z=1$, i.e.

$$
\limsup _{r \rightarrow 1^{-}}(1-r) \log |f(r)|=-2 m<0
$$

If $m_{1}<m$ then
(i) $F(z)=e^{m_{1} \frac{1+z}{1-z}} f(z)$ is in A^{p};
(ii) whenever $0 \neq \alpha_{n} \in \mathbf{D}$ and $\lim _{n \rightarrow \infty} \alpha_{n}=1$, the function

$$
f_{\alpha_{n}}(z)=\left(\frac{\alpha_{n}-z}{1-\bar{\alpha}_{n} z} \cdot \frac{\left|\alpha_{n}\right|}{\alpha_{n}}\right)^{N_{n}} F(z), \text { where } N_{n}=\left[\frac{m_{1}}{1-\left|\alpha_{n}\right|}\right],
$$

tends to f in the metric of A^{p}.
Proof: (i) For any $r \in(0, \infty)$ the equation

$$
\frac{1-|z|^{2}}{|1-z|^{2}}=r
$$

defines a circle C_{r} internally tangent to $\partial \mathbf{D}$ at the point 1 . Such circles are called orocycles. If f is in A^{p} and has atomic singularity m at 1 , then the function

$$
g(z)=e^{m \frac{1+z}{1-z}} f(z)
$$

may not be in A^{p}; however, the integral

$$
L(r)=\frac{1}{2 \pi} \int_{C_{r}}|1-\zeta|^{2}|g(\zeta)|^{p}|d \zeta|
$$

is finite and decreasing on $(0, r)$, and

$$
\int_{\mathbf{D}}|f(z)|^{p} \frac{d x d y}{\pi}=\int_{0}^{\infty} e^{-m r} L(r) d r<\infty
$$

This implies

$$
\int_{\mathbf{D}}|F(z)|^{p} \frac{d x d y}{\pi}=\int_{0}^{\infty} e^{-\left(m-m_{1}\right) r} L(r) d r<\infty
$$

(ii) then follows by the dominated convergence theorem

Lemma 4. If $I \subset \partial \mathbf{D}$ is an arc, M is an arbitrary subset of $\partial \mathbf{D}$, and if at least one point from M is in \bar{I}, then

$$
\int_{I} \log \frac{2 \pi}{d(\zeta, M)}|d \zeta| \geq \kappa(I)=|I| \log \frac{2 \pi e}{|I|}
$$

Proof: The minimum of the integral on the left for a given arc I is attained when M is a one-point set, and this point is one of the endpoints of I. A direct computation yields the required result.

$$
f_{\alpha}(z)=\frac{B_{\alpha}(z)}{B_{a}(z)} f(z)
$$

where B is a Blaschke factor:

$$
B_{\alpha}(z)=\frac{z-\alpha}{1-\bar{\alpha} z}, \quad B_{a}(z)=\frac{z-a}{1-\bar{a} z} .
$$

Then f_{α} tends to f in the metric of A^{p} as $\alpha \rightarrow a$.
The proof is immediate and left to the reader.

References

[B] K. Bogdan. On the zeros of functions with finite Dirichlet integral. Kodai Math. J., 19 (1996), 7-16.
[C] L. Carleson. On the zeros of functions with bounded Dirichlet integral. Math. Z. 56 (1952), 289-295.
[HKZ] H. Hedenmalm, B. Korenblum, K. Zhu. Theory of Bergman space. Graduate Texts in Mathematics, 199. Springer, 2000.
[K1] B. Korenblum. An extension of the Nevanlinna theory. Acta Math. 135 (1975), 187-219.
[K2] B. Korenblum. A Beurling-type theorem. Acta Math. 138 (1977), 265-293.
[S] K. Seip. Beurling type density theorems in the unit disk. Invent. Math. 113 (1993), 21-39.
[SS] H.S. Shapiro and A.L. Shields. On the zeros of functions with finite Dirichlet integral and some related function spaces. Math. Z. 80 (1962), 217-229.

Department of Mathematics and Statistics
University at Albany, State University of New York
1400 Washington Avenue, Albany, New York 12222
E-mail: borisko@math.albany.edu

