Blaschke Sets for Bergman Spaces

by Boris Korenblum

<u>ABSTRACT</u>.: We characterize subsets S of the open unit disk **D** such that every zero sequence for a Bergman space A^p , p > 0, with elements in S is Blaschke.

1. <u>Introduction</u>.

The following definition is an extension of the notion of a Blaschke set introduced by Krzysztof Bogdan [B].

<u>DEFINITION</u>: We call $S \subset \mathbf{D}$ a Blaschke set for a class X of analytic functions on $\mathbf{D} = \{z \in \mathbf{C} : |z| < 1\}$ if

(i) whenever $0 \neq f \in X$, and $\{z_n\}_n$ are the zeros of f (counting multiplicities), with $z_n \in S$, the Blaschke condition holds:

$$\sum_{n} (1 - |z_n|) < \infty ; \tag{1}$$

(ii) whenever $Z = \{z_n\}_n$ is a Blaschke sequence (i.e. (1) holds), with $z_n \in S$, there is an $f \in X$ whose zero sequence is Z.

<u>**REMARK</u>**: If X is made up of functions of bounded Nevanlinna characteric then this definition reduces to (ii). If $H^{\infty} \subset X$, it reduces to (i).</u>

EXAMPLES:

- 1. Every subset of **D** is a Blaschke set for H^p , 0 .
- 2. For analytic Lipschitz classes $Lip_{\alpha}(\mathbf{D}), \alpha > 0$, as well as for $A^{\infty} = \{f : f^{(n)} \in H^{\infty}, \forall n \geq 0\}$, Blaschke sets are characterized by

$$\int_{0}^{2\pi} \log \operatorname{dist}(e^{it}, S) dt > -\infty$$
(2)

where dist denotes the Euclidean distance. Note that for $Lip_{\alpha}(\mathbf{D})$ and A^{∞} the zero sequences Z are characterized by (1) and (2), with S replaced by Z.

3. The Blaschke sets S for the class \mathcal{D} of analytic functions with finite Dirichlet integral are characterized by (2) (see [B]). Note that \mathcal{D} -zero sequences cannot be described this way because there are $f \in \mathcal{D}$ whose zeros come arbitrarily close to every point of $\partial \mathbf{D}$ (see [C] and [SS]).

¹⁹⁹¹ Mathematics Subject Classification, Primary 30C15

The purpose of this paper is to obtain a description of the Blaschke sets for Bergman spaces $A^p(p > 0)$ and growth spaces $A^{-\alpha}(\alpha > 0)$. Recall that A^p consists of functions f analytic on **D** such that

$$||f||_p^p = \int_{\mathbf{D}} |f(z)|^p \frac{dxdy}{\pi} < \infty ;$$

 $A^{-\alpha}$ consists of analytic functions f with

$$||f||_{-\alpha} = \sup\{(1-|z|)^{\alpha}|f(z)| : z \in \mathbf{D}\} < \infty;$$

We also consider the space $A^{-\infty} = \bigcup_{\alpha>0} A^{-\alpha} = \bigcup_{p>0} A^p$.

We establish the following

<u>THEOREM</u>. A set $S \subset \mathbf{D}$ is a Blaschke set for any of the spaces $A^p, A^{-\alpha}, A^{-\infty}$ if and only if (2) holds.

To prove this theorem we first reduce condition (2) to a form involving a collection of disjoint "tents" tightly surrounding S. The sufficiency of (2) then follows from the fact that "Stolz stars" S_F are $A^{-\infty}$ -Blaschke sets if the entropy $\hat{\kappa}(F)$ is finite (see (3) and [HKZ]). To prove the necessity of (2) we use some density concepts first introduced in [K1] and later refined in [S] and [HKZ].

<u>ACKNOWLEDGEMENT</u>: The suthor thanks Stefan Richter and Carl Sundberg for useful discussions. Special thanks are due to Carl Sundberg for bringing K. Bogdan's work [B] to the author's attention.

<u>2. An equivalent form of (2).</u>

We assume that S contains a disk centered at 0 of radius $1/\sqrt{2}$.

We need some terminology.

A <u>tent</u> is an open subset h of \mathbf{D} bounded by an arc $I \subset \partial \mathbf{D}$ of length less than $\pi/2$ and two straight lines through the endpoints of I forming with I an angle of $\pi/4$. The closed arc \overline{I} will be called the <u>base</u> of the tent $h = h_I$. A tent h is said to <u>support</u> S if $h \cap S = \phi$ but $\overline{h} \cap \overline{S} \neq \phi$. A finite or countable collection of tents $\{h_n\}_n$ is a <u>belt</u> if h_n are pairwise disjoint and $\bigcup_n \overline{h}_n \supset \partial \mathbf{D}$. A collection of tents $\{h_n\}_n$ is an <u>S-belt</u> if h_n are pairwise disjoint, S-supporting, and $\bigcup_n \overline{h}_n \supset \partial \mathbf{D} \setminus \overline{S}$. Note that an S-belt does not have to be a belt. If S is such that $\partial \mathbf{D} \setminus \overline{S} \neq \phi$, S-belts exist: to obtain one we start at an arbitrary point $\zeta_0 \in \partial \mathbf{D} \setminus \overline{S}$ and, moving counterclockwise, consecutively find points $\zeta_1, \zeta_2 \dots$ such that the arcs between them are the bases of S-supporting tents; then we proceed similarly from ζ_0 in the opposite direction. We thus obtain a system of tents whose bases cover a component of $G = \partial \mathbf{D} \setminus \overline{S}$. Continuing this process for all the components we obtain an S-belt.

An elementary computation shows that if $h = h_I$ is a tent supporting S then

$$-|I|\log\frac{1}{|I|} - c|I| \le \int_I \log \operatorname{dist}(\zeta, S)|d\zeta| \le -|I|\log\frac{1}{|I|} + c|I|$$

where c is a numerical constant. We thus obtain

<u>LEMMA 1</u>. Let S be a subset of **D** such that $\partial \mathbf{D} \setminus \overline{S} \neq \phi$. Let $\{h_{I_n}\}_n$ be an S-belt. Then (2) holds if and only if

(A) the set $F_0 = \overline{S} \cap \partial \mathbf{D}$ has zero Lebesgue length;

(B)

$$\sum_{n} \kappa(I_n) < \infty \text{ where } \kappa(I) = |I| \log \frac{2\pi e}{|I|}$$

 $(\kappa(I) \text{ is called the } \kappa \text{ length of } I).$

Note that (A) and (B) together are equivalent to

$$\hat{\kappa}(F) = \int_{\partial \mathbf{D}} \log \frac{2\pi}{d(\zeta, F)} |d\zeta| < \infty$$
(3)

where $F = F_0 \cup \Xi$ and Ξ consists of the endpoints of those bases such that $\overline{I}_n \subset G$; d denotes the angular distance.

The quantity $\hat{\kappa}(F)$ is defined for all sets $F \subset \partial \mathbf{D}$ and is called the <u>entropy</u> of F. Closed sets with finite entropy are called <u>Beurling-Carleson sets</u>.

3. Sufficiency of (3).

Let $\Xi_1 \supset \Xi$ consist of <u>all</u> endpoints of the bases I_n (including those that are in F_0). Pick an increasing sequence $F_1 \subset F_2 \subset \ldots$ of finite subsets of Ξ_1 such that $\bigcup_n F_n = \Xi_1$. Then (3) implies

$$\lim_{n \to \infty} \hat{\kappa}(F_n) = \hat{\kappa}(F) \; .$$

Each F_n determines a belt whose tents are based on complementary arcs of F_n . Let H_n be the union of these tents. (Note that some of these tents are not S-supporting because they contain points from S). The complement $\mathbf{D} \setminus H_n = \tau_n$ is a "Stolz Star", i.e. the union of Stolz angles with vertices in F_n and apertures of $\pi/2$.

Since $\hat{\kappa}(F_n)$ are bounded, it follows that, whenever $0 \neq f \in A^{-\infty}$, the Blaschke sums for those zeros of f lying in τ_n are bounded (see [HKZ], p. 118, Theorem 4.25). We have $\sum_n \tau_n \supset S$ and $\tau_1 \subset \tau_2 \subset \ldots$, which implies that the Blaschke sum for the zeros of f lying in S is finite.

4. Necessity of (3).

Suppose now that $\hat{\kappa}(F) = \infty$. Given an arbitrary fixed p > 0 we are going to construct a sequence $Z = \{z_n\}_n, z_n \in S$, such that Z is an A^p -zero sequence but $\sum (1 - |z_n|) = \infty$. In addition to the standard tools of $A^{-\infty}$ -theory (density notions, premeasures, etc.) we will use some technical lemmas whose proofs are deferred to section 5.

Recall that $F = F_0 \cup \Xi$ where $F_0 = \overline{S} \cap \partial \mathbf{D}$ and Ξ is a finite or countable set lying in $G = \partial \mathbf{D} \setminus F_0$. The cluster points (if any) of Ξ are in F_0 .

We consider separately two cases depending on whether $\hat{\kappa}(F_0)$ is infinite or finite.

<u>CASE 1</u>: $\hat{\kappa}(F_0) = \infty$. By Lemma 2, s.5, there is a sequence $\{\zeta_\nu\}_1^\infty$ of distinct points in F_0 such that the corresponding arcs $\{J_\nu\}_1^\infty$ between ζ_ν and $\zeta_{\nu+1}$ are pairwise disjoint, cover $\partial \mathbf{D}$, i.e. $\bigcup_{\nu} \overline{J}_{\nu} = \partial \mathbf{D}$, and $\hat{\kappa}(\{\zeta_\nu\}) = \infty$, which is equivalent to

$$\sum_{\nu=1}^{\infty} \kappa(J_{\nu}) = \sum_{\nu=1}^{\infty} |J_{\nu}| \log \frac{2\pi e}{|J_{\nu}|} = \infty .$$

(Note that $\lim_{\nu \to \infty} \zeta_{\nu} = \zeta_1$). Construct a premeasure (see [K1], [K2], [HKZ]) $d\mu = p|d\zeta| - d\sigma$ whose positive part has the density

$$p(\zeta) = \log \frac{2\pi}{d(\zeta, \{\zeta_{\nu}, \zeta_{\nu+1}\})}, \zeta \in J_{\nu}, \ \nu \ge 1$$

and the negative singular part $-d\sigma$ puts on every point ζ_{ν} a Dirac mass equal to $-\kappa(J_{\nu})$. Although both positive and negative parts are infinite on $\partial \mathbf{D}$, $d\mu$ is κ -bounded above, which means that there is a constant c > 0 such that for all arcs $I \subset \partial \mathbf{D}$

$$\mu(I) \le c|I| \log \frac{2\pi e}{|I|} \; .$$

This enables us to consider a zero-free analytic function

$$f_{\varepsilon}(z) = \exp\{\varepsilon \int_{\partial \mathbf{D}} \frac{\zeta + z}{\zeta - z} d\mu(\zeta)\}$$

which is in A^p (or $A^{-\alpha}$) provided that $\varepsilon > 0$ is sufficiently small, and p (or α) are arbitrary but fixed positive numbers.

Now we use Lemma 3, s.5, to reduce all the singular masses at ζ_{ν} by a factor 1/2and compensate for that by extra zeros of high multiplicity at $z_{\nu} \in S$. We can ensure that the resulting function Φ is in A^p . The zeros z_{ν} of ϕ (counting multiplicities) form a non-Blaschke sequence of points from S (see Lemma 3 for details). <u>CASE 2</u>: $\hat{\kappa}(F_0) < \infty$. Then we must have $\hat{\kappa}(\Xi) = \infty$. Recall that Ξ includes all the endpoint of the base arcs of the *S*-belt that are in $G = \partial \mathbf{D} \setminus \overline{S}$. Let $\{J_\nu\}_\nu$ be the sequence of these arcs arranged by decreasing lengths. Then $\hat{\kappa}(F_0) < \infty$ together with $\hat{\kappa}(\Xi) = \infty$ yield

$$\sum_{\nu=1}^{\infty} \kappa(J_{\nu}) = \sum_{\nu=1}^{\infty} |J_{\nu}| \log \frac{2\pi e}{|I_{\nu}|} = \infty .$$

It is always possible to find a decreasing sequence $1 > \lambda_1 > \lambda_2 > \ldots \rightarrow 0$ such that

$$\sum_{\nu=1}^{\infty} \lambda_{\nu} \kappa(J_{\nu}) = \infty \; .$$

Every \overline{J}_{ν} is the base of a tent $h_{J_{\nu}}$ that supports S; therefore there is at least one common point, say w_{ν} , in \overline{S} , $\overline{h}_{J_{\nu}}$ and **D**. Take every w_{ν} and repeat it $\left[\frac{\lambda_{\nu}\kappa(J_{\nu})}{1-|w_{\nu}|}\right]$ times. Let the resulting sequence be $Z = \{z_k\}_k$.

<u>CLAIM</u>: Z is a zero sequence for every A^p , p > 0. To prove the claim we employ the notion of <u>upper asymptotic κ -density</u> of a sequence in **D**. There are several equivalent definitions of this density. We will use the definition based on <u>radial stars</u> (see [HKZ]):

For an arbitrary finite set $M \subset \partial \mathbf{D}$ let r_M denote the union of radii from 0 to points in M. If $A = \{a_k\}_k$ is any sequence of points in \mathbf{D} , we form the <u>partial Blaschke sum</u> for A and r_M :

$$B(A, r_M) = \sum_{\kappa} \{1 - |a_k| : a_k \in r_M\},\$$

and define

$$D^{+}(A) = \limsup_{\hat{\kappa}(M) \to \infty} \frac{B(A, r_M)}{\hat{\kappa}(M)}$$
(4)

where \limsup is taken over all finite $M \subset \partial \mathbf{D}$.

The following result, although short of a full characterization of A^p -zero sets, is sharp enough for our purposes.

<u>PROPOSITION</u>. (See [HKZ], p.130, Theorem 4.37). Let $A = \{a_{\kappa}\}_{k}$ be a sequence of points in **D** and $\mathbf{D}^{+}(A)$ be the upper asymptotic κ -density of A. If $D^{+}(A) < \frac{1}{p}$ then A is an A^{p} -zero sequence. If $D^{+}(A) > \frac{1}{p}$ then A is not an A^{p} -zero sequence.

<u>REMARK</u>: This is a sharper version, due to Kristian Seip [S], of a similar but weaker result from [K1].

Now we can prove the claim by showing that $D^+(Z) = 0$. Let $Q = \{q_\nu = \frac{w_\nu}{|w_\nu|}\}_{\nu}$. Every arc J_{ν} contains exactly one point from Q, namely q_{ν} . Obviously, for computing $D^+(Z)$ we can employ only those M that are finite subsets of Q. For such M we have

$$B(Z, r_M) \le \sum_{\nu} \{\lambda_{\nu} \kappa(J_{\nu}) : q_{\nu} \in M\}$$

and

$$\hat{\kappa}(M) \ge \sum_{\nu} \{ \kappa(J_{\nu}) : q_{\nu} \in M \}$$

(see Lemma 4, s.5). Therefore

$$\frac{B(Z, r_M)}{\hat{\kappa}(M)} \le \sum_{\nu} \{\lambda_{\nu} \kappa(J_{\nu}) : q_{\nu} \in M\} / \sum_{\nu} \{\kappa(J_{\nu}) : q_{\nu} \in M\} .$$

It is convenient to use the following notations:

$$K(M) = \sum_{\nu} \{ \kappa(J_{\nu}) : q_{\nu} \in M \} ,$$

$$K_{\lambda}(M) = \sum_{\nu} \{ \lambda_{\nu} \kappa(J_{\nu}) : q_{\nu} \in M \} .$$

Let $\{M_n\}_n$ be a sequence of subsets of Q such that $\hat{\kappa}(M_n) \to \infty$. Then we have

$$\frac{B(Z, r_{M_n})}{\hat{\kappa}(M_n)} \le \frac{K_{\lambda}(M_n)}{K(M_n)} .$$
(5)

Suppose that $K(M_n) = \mathcal{O}(1)(n \to \infty)$. Then obviously the left-hand side of (5) tends to 0. Also, if $K(M_n) \to \infty$, then the right-hand (and, with it, the left-hand) side of (5) tends to 0 because $\lambda_{\nu} \downarrow 0$. Therefore every sequence $\{M_n\}, M_n \subset Q, \hat{\kappa}(M_n) \to \infty$, contains a subsequence $\{M_{n_k}\} = \{M'_k\}, n_1 < n_2 \dots$, such that

$$\lim_{k \to 0} \frac{B(Z, r_{M'_k})}{\hat{\kappa}(M'_k)} = 0 \; .$$

which implies $D^+(Z) = 0$. Thus we have obtained a non-Blaschke A^p -zero sequence $\{z_k\}$ whose elements are in \overline{S} . Using how Lemma 5, s.5, we can replace z_k by nearby points \tilde{z}_k from S so that the new sequence $\{\tilde{z}_k\}_k$ is still an A^p -zero sequence and non-Blaschke. This completes the proof of the Theorem.

5. Technical Lemma.

We give below the statement of the technical lemmas we used in proving the Theorem, together with a brief outline of their proofs.

<u>DEFINITION</u>: A sequence $\{\zeta_n\}_1^\infty$ of distinct points in $\partial \mathbf{D}$ is called <u>T-monotone</u> if the open arcs I_n between ζ_n and ζ_{n+1} are pairwise disjoint and $\bigcup_n \overline{I} = \partial \mathbf{D}$. Note that it follows from this definition that $\lim_{n \to \infty} \zeta_\infty = \zeta_1$. <u>LEMMA 2</u>. Every closed set $F \subset \partial \mathbf{D}$ of infinite entropy contains a **T**-monotone sequence $\{\zeta_n\}_n \subset F$ of infinite entropy.

PROOF: We have

$$\hat{\kappa}(F) = \int_{\partial \mathbf{D}} \log \frac{2\pi}{d(\zeta, F)} |d\zeta| = \infty \; .$$

(d denotes the angular distance). By the Heine-Borel lemma there is a point $\zeta_0 \in F$ such that every open arc J containing ζ_0 has the property

$$\int_{J} \log \frac{2\pi}{d(\zeta, F)} |d\zeta| = \infty \; .$$

Now we can find a nested system of open arcs such that $J_{\kappa} \supset \overline{J}_{n+1}$, $\bigcap_{n} I_n = \{\zeta_0\}$, and a finite set $M_k \subset (J_n \setminus \overline{J}_{n+1}) \cap F$ such that

$$\int_{J_n \setminus \overline{J}_{n+1}} \log \frac{2\pi}{d(\zeta, M_n)} |d\zeta| \ge 1, \ n \ge 1 \ .$$

Taking the union $E = \bigcup_{n} M_n$ (or a suitable subset of E) and rearranging it in a sequence will prove the Lemma.

<u>LEMMA 3</u>. Let $f \in A^p(p > 0)$ have an "atomic singularity" at z = 1, i.e.

$$\limsup_{r \to 1^{-}} (1 - r) \log |f(r)| = -2m < 0 .$$

If $m_1 < m$ then

(i) $F(z) = e^{m_1 \frac{1+z}{1-z}} f(z)$ is in A^p ;

(ii) whenever $0 \neq \alpha_n \in \mathbf{D}$ and $\lim_{n \to \infty} \alpha_n = 1$, the function

$$f_{\alpha_n}(z) = \left(\frac{\alpha_n - z}{1 - \overline{\alpha}_n z} \cdot \frac{|\alpha_n|}{\alpha_n}\right)^{N_n} F(z), \text{ where } N_n = \left[\frac{m_1}{1 - |\alpha_n|}\right],$$

tends to f in the metric of A^p .

<u>**PROOF</u>**: (i) For any $r \in (0, \infty)$ the equation</u>

$$\frac{1-|z|^2}{|1-z|^2} = r$$

defines a circle C_r internally tangent to $\partial \mathbf{D}$ at the point 1. Such circles are called orocycles. If f is in A^p and has atomic singularity m at 1, then the function

$$g(z) = e^{m\frac{1+z}{1-z}}f(z)$$

may not be in A^p ; however, the integral

$$L(r) = \frac{1}{2\pi} \int_{C_r} |1 - \zeta|^2 |g(\zeta)|^p |d\zeta|$$

is finite and decreasing on (0, r), and

$$\int_{\mathbf{D}} |f(z)|^p \frac{dxdy}{\pi} = \int_0^\infty e^{-mr} L(r) dr < \infty \; .$$

This implies

$$\int_{\mathbf{D}} |F(z)|^p \frac{dxdy}{\pi} = \int_0^\infty e^{-(m-m_1)r} L(r)dr < \infty \; .$$

(ii) then follows by the dominated convergence theorem

<u>LEMMA 4</u>. If $I \subset \partial \mathbf{D}$ is an arc, M is an arbitrary subset of $\partial \mathbf{D}$, and if at least one point from M is in \overline{I} , then

$$\int_{I} \log \frac{2\pi}{d(\zeta, M)} |d\zeta| \ge \kappa(I) = |I| \log \frac{2\pi e}{|I|} \ .$$

<u>PROOF</u>: The minimum of the integral on the left for a given arc I is attained when M is a one-point set, and this point is one of the endpoints of I. A direct computation yields the required result.

<u>LEMMA 5</u>. Let $f \in A^p$ have a zero at some point $a \in \mathbf{D}$. For arbitrary $\alpha \in \mathbf{D}$ define

$$f_{\alpha}(z) = \frac{B_{\alpha}(z)}{B_{a}(z)}f(z)$$

where B is a Blaschke factor:

$$B_{\alpha}(z) = \frac{z - \alpha}{1 - \overline{\alpha}z}, \ B_a(z) = \frac{z - a}{1 - \overline{a}z} \ .$$

Then f_{α} tends to f in the metric of A^p as $\alpha \to a$.

The proof is immediate and left to the reader.

References

- [B] <u>K. Bogdan</u>. On the zeros of functions with finite Dirichlet integral. Kodai Math. J., 19 (1996), 7-16.
- [C] <u>L. Carleson</u>. On the zeros of functions with bounded Dirichlet integral. Math. Z. 56 (1952), 289-295.
- [HKZ] <u>H. Hedenmalm</u>, <u>B. Korenblum</u>, <u>K. Zhu</u>. Theory of Bergman space. Graduate Texts in Mathematics, 199. Springer, 2000.
 - [K1] <u>B. Korenblum</u>. An extension of the Nevanlinna theory. Acta Math. 135 (1975), 187-219.
 - [K2] <u>B. Korenblum</u>. A Beurling-type theorem. Acta Math. 138 (1977), 265-293.
 - [S] <u>K. Seip</u>. Beurling type density theorems in the unit disk. Invent. Math. 113 (1993), 21-39.
 - [SS] <u>H.S. Shapiro</u> and <u>A.L. Shields</u>. On the zeros of functions with finite Dirichlet integral and some related function spaces. Math. Z. 80 (1962), 217-229.

Department of Mathematics and Statistics University at Albany, State University of New York 1400 Washington Avenue, Albany, New York 12222 E-mail: borisko@math.albany.edu