
Blaschke Sets for Bergman Spaces

by Boris Korenblum

Abstract.: We characterize subsets S of the open unit disk D such that every zero
sequence for a Bergman space Ap, p > 0, with elements in S is Blaschke.

1. Introduction.

The following definition is an extension of the notion of a Blaschke set introduced by
Krzysztof Bogdan [B].

Definition: We call S ⊂ D a Blaschke set for a class X of analytic functions on D =
{z ∈ C : |z| < 1} if

(i) whenever 0 6≡ f ∈ X, and {zn}n are the zeros of f (counting multiplicities), with
zn ∈ S, the Blaschke condition holds:

∑
n

(1− |zn|) < ∞ ; (1)

(ii) whenever Z = {zn}n is a Blaschke sequence (i.e. (1) holds), with zn ∈ S, there is an
f ∈ X whose zero sequence is Z.

Remark: If X is made up of functions of bounded Nevanlinna characteric then this defi-
nition reduces to (ii). If H∞ ⊂ X, it reduces to (i).

Examples:

1. Every subset of D is a Blaschke set for Hp, 0 < p < ∞.

2. For analytic Lipschitz classes Lipα(D), α > 0, as well as for A∞ = {f : f (n) ∈
H∞,∀n ≥ 0}, Blaschke sets are characterized by∫ 2π

0

log dist(eit, S)dt > −∞ (2)

where dist denotes the Euclidean distance. Note that for Lipα(D) and A∞ the zero
sequences Z are characterized by (1) and (2), with S replaced by Z.

3. The Blaschke sets S for the class D of analytic functions with finite Dirichlet integral
are characterized by (2) (see [B]). Note that D-zero sequences cannot be described
this way because there are f ∈ D whose zeros come arbitrarily close to every point of
∂D (see [C] and [SS]).
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The purpose of this paper is to obtain a description of the Blaschke sets for Bergman
spaces Ap(p > 0) and growth spaces A−α(α > 0). Recall that Ap consists of functions f

analytic on D such that

‖f‖p
p =

∫
D

|f(z)|p dxdy

π
< ∞ ;

A−α consists of analytic functions f with

‖f‖−α = sup{(1− |z|)α|f(z)| : z ∈ D} < ∞ ;

We also consider the space A−∞ =
⋃
α>0

A−α =
⋃
p>0

Ap.

We establish the following

Theorem. A set S ⊂ D is a Blaschke set for any of the spaces Ap, A−α, A−∞ if and only

if (2) holds.

To prove this theorem we first reduce condition (2) to a form involving a collection
of disjoint “tents” tightly surrounding S. The sufficiency of (2) then follows from the fact
that “Stolz stars” SF are A−∞-Blaschke sets if the entropy κ̂(F ) is finite (see (3) and
[HKZ]). To prove the necessity of (2) we use some density concepts first introduced in [K1]
and later refined in [S] and [HKZ].

Acknowledgement: The suthor thanks Stefan Richter and Carl Sundberg for useful
discussions. Special thanks are due to Carl Sundberg for bringing K. Bogdan’s work [B]
to the author’s attention.

2. An equivalent form of (2).

We assume that S contains a disk centered at 0 of radius 1/
√

2.
We need some terminology.
A tent is an open subset h of D bounded by an arc I ⊂ ∂D of length less than π/2

and two straight lines through the endpoints of I forming with I an angle of π/4. The
closed arc I will be called the base of the tent h = hI . A tent h is said to support S if
h ∩ S = φ but h ∩ S 6= φ. A finite or countable collection of tents {hn}n is a belt if hn

are pairwise disjoint and
⋃
n

hn ⊃ ∂D. A collection of tents {hn}n is an S-belt if hn are

pairwise disjoint, S-supporting, and
⋃
n

hn ⊃ ∂D\S. Note that an S-belt does not have to

be a belt. If S is such that ∂D\S 6= φ, S-belts exist: to obtain one we start at an arbitrary
point ζ0 ∈ ∂D\S and, moving counterclockwise, consecutively find points ζ1, ζ2 . . . such
that the arcs between them are the bases of S-supporting tents; then we proceed similarly
from ζ0 in the opposite direction. We thus obtain a system of tents whose bases cover a
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component of G = ∂D\S. Continuing this process for all the components we obtain an
S-belt.

An elementary computation shows that if h = hI is a tent supporting S then

−|I| log
1
|I|

− c|I| ≤
∫

I

log dist(ζ, S)|dζ| ≤ −|I| log
1
|I|

+ c|I|

where c is a numerical constant. We thus obtain

Lemma 1. Let S be a subset of D such that ∂D\S 6= φ. Let {hIn}n be an S-belt. Then

(2) holds if and only if

(A) the set F0 = S ∩ ∂D has zero Lebesgue length;

(B) ∑
n

κ(In) < ∞ where κ(I) = |I| log
2πe

|I|
.

(κ(I) is called the κ length of I).

Note that (A) and (B) together are equivalent to

κ̂(F ) =
∫

∂D

log
2π

d(ζ, F )
|dζ| < ∞ (3)

where F = F0 ∪ Ξ and Ξ consists of the endpoints of those bases such that In ⊂ G; d

denotes the angular distance.
The quantity κ̂(F ) is defined for all sets F ⊂ ∂D and is called the entropy of F .

Closed sets with finite entropy are called Beurling-Carleson sets.

3. Sufficiency of (3).

Let Ξ1 ⊃ Ξ consist of all endpoints of the bases In (including those that are in F0).
Pick an increasing sequence F1 ⊂ F2 ⊂ . . . of finite subsets of Ξ1 such that

⋃
n

Fn = Ξ1.

Then (3) implies
lim

n→∞
κ̂(Fn) = κ̂(F ) .

Each Fn determines a belt whose tents are based on complementary arcs of Fn. Let Hn

be the union of these tents. (Note that some of these tents are not S-supporting because
they contain ponts from S). The complement D\Hn = τn is a “Stolz Star”, i.e. the union
of Stolz angles with vertices in Fn and apertures of π/2.

Since κ̂(Fn) are bounded, it follows that, whenever 0 6≡ f ∈ A−∞, the Blaschke sums
for those zeros of f lying in τn are bounded (see [HKZ], p. 118, Theorem 4.25). We have∑

n

τn ⊃ S and τ1 ⊂ τ2 ⊂ . . ., which implies that the Blaschke sum for the zeros of f lying

in S is finite.

3



4. Necessity of (3).

Suppose now that κ̂(F ) = ∞. Given an arbitrary fixed p > 0 we are going to construct
a sequence Z = {zn}n, zn ∈ S, such that Z is an Ap-zero sequence but

∑
(1− |zn|) = ∞.

In addition to the standard tools of A−∞-theory (density notions, premeasures, etc.) we
will use some technical lemmas whose proofs are deferred to section 5.

Recall that F = F0 ∪ Ξ where F0 = S ∩ ∂D and Ξ is a finite or countable set lying in
G = ∂D\F0. The cluster points (if any) of Ξ are in F0.

We consider separately two cases depending on whether κ̂(F0) is infinite or finite.

Case 1: κ̂(F0) = ∞. By Lemma 2, s.5, there is a sequence {ζν}∞1 of distinct points in F0

such that the corresponding arcs {Jν}∞1 between ζν and ζν+1 are pairwise disjoint, cover
∂D, i.e.

⋃
ν

Jν = ∂D, and κ̂({ζν}) = ∞, which is equivalent to

∞∑
ν=1

κ(Jν) =
∞∑

ν=1

|Jν | log
2πe

|Jν |
= ∞ .

(Note that lim
ν→∞

ζν = ζ1). Construct a premeasure (see [K1], [K2], [HKZ]) dµ = p|dζ| − dσ

whose positive part has the density

p(ζ) = log
2π

d(ζ, {ζν , ζν+1})
, ζ ∈ Jν , ν ≥ 1 ,

and the negative singular part −dσ puts on every point ζν a Dirac mass equal to −κ(Jν).
Although both positive and negative parts are infinite on ∂D, dµ is κ-bounded above,
which means that there is a constant c > 0 such that for all arcs I ⊂ ∂D

µ(I) ≤ c|I| log
2πe

|I|
.

This enables us to consider a zero-free analytic function

fε(z) = exp{ε
∫

∂D

ζ + z

ζ − z
dµ(ζ)}

which is in Ap (or A−α) provided that ε > 0 is sufficiently small, and p (or α) are arbitary
but fixed positive numbers.

Now we use Lemma 3, s.5, to reduce all the singular masses at ζν by a factor 1/2
and compensate for that by extra zeros of high multiplicity at zν ∈ S. We can ensure
that the resulting function Φ is in Ap. The zeros zν of φ (counting multiplicities) form a
non-Blaschke sequence of points from S (see Lemma 3 for details).
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Case 2: κ̂(F0) < ∞. Then we must have κ̂(Ξ) = ∞. Recall that Ξ includes all the
endpoint of the base arcs of the S-belt that are in G = ∂D\S. Let {Jν}ν be the sequence
of these arcs arranged by decreasing lengths. Then κ̂(F0) < ∞ together with κ̂(Ξ) = ∞
yield

∞∑
ν=1

κ(Jν) =
∞∑

ν=1

|Jν | log
2πe

|Iν |
= ∞ .

It is always possible to find a decreasing sequence 1 > λ1 > λ2 > . . . → 0 such that

∞∑
ν=1

λνκ(Jν) = ∞ .

Every Jν is the base of a tent hJν that supports S; therefore there is at least one
common point, say wν , in S, hJν and D. Take every wν and repeat it [λνκ(Jν)

1−|wν | ] times. Let
the resulting sequence be Z = {zk}k.

Claim: Z is a zero sequence for every Ap, p > 0. To prove the claim we employ the notion
of upper asymptotic κ-density of a sequence in D. There are several equivalent definitions
of this density. We will use the definition based on radial stars (see [HKZ]):

For an arbitrary finite set M ⊂ ∂D let rM denote the union of radii from 0 to points
in M . If A = {ak}k is any sequence of points in D, we form the partial Blaschke sum for
A and rM:

B(A, rM ) =
∑

κ

{1− |ak| : ak ∈ rM} ,

and define

D+(A) = lim sup
κ̂(M)→∞

B(A, rM )
κ̂(M)

(4)

where lim sup is taken over all finite M ⊂ ∂D.

The following result, although short of a full characterization of Ap-zero sets, is sharp
enough for our purposes.

Proposition. (See [HKZ], p.130, Theorem 4.37). Let A = {aκ}k be a sequence of points

in D and D+(A) be the upper asymptotic κ-density of A. If D+(A) < 1
p then A is an

Ap-zero sequence. If D+(A) > 1
p then A is not an Ap-zero sequence.

Remark: This is a sharper version, due to Kristian Seip [S], of a simiilar but weaker result
from [K1].

Now we can prove the claim by showing that D+(Z) = 0. Let Q = {qν = wν

|wν |}ν .
Every arc Jν contains exactly one point from Q, namely qν . Obviously, for computing
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D+(Z) we can employ only those M that are finite subsets of Q. For such M we have

B(Z, rM ) ≤
∑

ν

{λνκ(Jν) : qν ∈ M}

and
κ̂(M) ≥

∑
ν

{κ(Jν) : qν ∈ M}

(see Lemma 4, s.5). Therefore

B(Z, rM )
κ̂(M)

≤
∑

ν

{λνκ(Jν) : qν ∈ M}/
∑

ν

{κ(Jν) : qν ∈ M} .

It is convenient to use the following notations:

K(M) =
∑

ν

{κ(Jν) : qν ∈ M} ,

Kλ(M) =
∑

ν

{λνκ(Jν) : qν ∈ M} .

Let {Mn}n be a sequence of subsets of Q such that κ̂(Mn) →∞. Then we have

B(Z, rMn)
κ̂(Mn)

≤ Kλ(Mn)
K(Mn)

. (5)

Suppose that K(Mn) = O(1)(n →∞). Then obviously the left-hand side of (5) tends
to 0. Also, if K(Mn) → ∞, then the right-hand (and, with it, the left-hand) side of
(5) tends to 0 because λν ↓ 0. Therefore every sequence {Mn}, Mn ⊂ Q, κ̂(Mn) → ∞,
contains a subsequence {Mnk

} = {M ′
k}, n1 < n2 . . ., such that

lim
k→0

B(Z, rM ′
k
)

κ̂(M ′
k)

= 0 .

which implies D+(Z) = 0. Thus we have obtained a non-Blaschke Ap-zero sequence {zk}
whose elements are in S. Using how Lemma 5, s.5, we can replace zk by nearby points
z̃k from S so that the new sequence {z̃k}k is still an Ap-zero sequence and non-Blaschke.
This completes the proof of the Theorem.

5. Technical Lemma.

We give below the statement of the technical lemmas we used in proving the Theorem,
together with a brief outline of their proofs.

Definition: A sequence {ζn}∞1 of distinct points in ∂D is called T-monotone if the open
arcs In between ζn and ζn+1 are pairwise disjoint and

⋃
n

I = ∂D. Note that it follows

from this definition that lim
n→∞

ζ∞ = ζ1.
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Lemma 2. Every closed set F ⊂ ∂D of infinite entropy contains a T-monotone sequence

{ζn}n ⊂ F of infinite entropy.

Proof: We have

κ̂(F ) =
∫

∂D

log
2π

d(ζ, F )
|dζ| = ∞ .

(d denotes the angular distance). By the Heine-Borel lemma there is a point ζ0 ∈ F such
that every open arc J containing ζ0 has the property∫

J

log
2π

d(ζ, F )
|dζ| = ∞ .

Now we can find a nested system of open arcs such that Jκ ⊃ Jn+1,
⋂
n

In = {ζ0},

and a finite set Mk ⊂ (Jn\Jn+1) ∩ F such that∫
Jn\Jn+1

log
2π

d(ζ, Mn)
|dζ| ≥ 1, n ≥ 1 .

Taking the union E =
⋃
n

Mn (or a suitable subset of E) and rearranging it in a sequence

will prove the Lemma.

Lemma 3. Let f ∈ Ap(p > 0) have an “atomic singularity” at z = 1, i.e.

lim sup
r→1−

(1− r) log |f(r)| = −2m < 0 .

If m1 < m then

(i) F (z) = em1
1+z
1−z f(z) is in Ap;

(ii) whenever 0 6= αn ∈ D and lim
n→∞

αn = 1, the function

fαn
(z) = (

αn − z

1− αnz
· |αn|

αn
)NnF (z), where Nn = [

m1

1− |αn|
] ,

tends to f in the metric of Ap.

Proof: (i) For any r ∈ (0,∞) the equation

1− |z|2

|1− z|2
= r

defines a circle Cr internally tangent to ∂D at the point 1. Such circles are called orocycles.
If f is in Ap and has atomic singularity m at 1, then the function

g(z) = em 1+z
1−z f(z)
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may not be in Ap; however, the integral

L(r) =
1
2π

∫
Cr

|1− ζ|2|g(ζ)|p|dζ|

is finite and decreasing on (0, r), and∫
D

|f(z)|p dxdy

π
=

∫ ∞

0

e−mrL(r)dr < ∞ .

This implies ∫
D

|F (z)|p dxdy

π
=

∫ ∞

0

e−(m−m1)rL(r)dr < ∞ .

(ii) then follows by the dominated convergence theorem

Lemma 4. If I ⊂ ∂D is an arc, M is an arbitrary subset of ∂D, and if at least one point

from M is in I, then ∫
I

log
2π

d(ζ, M)
|dζ| ≥ κ(I) = |I| log

2πe

|I|
.

Proof: The minimum of the integral on the left for a given arc I is attained when M is
a one-point set, and this point is one of the endpoints of I. A direct computation yields
the required result.

Lemma 5. Let f ∈ Ap have a zero at some point a ∈ D. For arbitrary α ∈ D define

fα(z) =
Bα(z)
Ba(z)

f(z)

where B is a Blaschke factor:

Bα(z) =
z − α

1− αz
, Ba(z) =

z − a

1− az
.

Then fα tends to f in the metric of Ap as α → a.

The proof is immediate and left to the reader.
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