1. For which primes p are the Sylow p-subgroups of the symmetric group S_4 normal?

2. If G is any group, H a subgroup, and x, y elements of G, show that $xH = Hy$ if and only if x and y both belong to the normalizer $N_G(H)$ and determine the same element of $N_G(H)/H$.

3. Show that the group $\text{SL}_2(\mathbb{F}_3)$ has a normal subgroup of order 8. List the 8 elements of this subgroup, and explain why this group of order 8 is not isomorphic to the dihedral group D_4.

4. Let G be a finite group and H a subgroup of index 3 in G that is not a normal subgroup of G. Show that H contains a subgroup N that is normal in G for which $G/N \cong S_3$.

5. Find an explicit list of groups that represent all isomorphism classes of groups of order 66.