Math 502 Class Slides

February 5, 2008

1 Exercise 63:6 on floating-point approximation

- Approximate $e^{\pi \sqrt{163}}-262537412640768744$ with precision settings of 15,25 , and 35 digits
- The given real number is close to zero; it is initially unclear whether it is positive or negative.
- Maple will hold $e^{\pi \sqrt{163}}$ symbolically unless floating point conversion is forced in some way.
- Maple's rounding function round() does not force floating point conversion.
- Results obtained using floating point arithmetic (computerized emulation of real number arithmetic) may vary. Control of precision is, therefore, important.
- Floating point calculations below do not match those usually obtained on machines in the classroom.
- Using $\mathrm{x}-\mathrm{n}$ below with evalf() is not significantly different from repeatedly using $\exp ($ Pi*sqrt (163)) -262537412640768744.
> $\mathrm{x}:=\exp ($ Pi*sqrt(163)) ;

$$
x:=\exp \left(\operatorname{Pi} 163^{1 / 2}\right)
$$

$>$ round (x);
$1 / 2$
round $(\exp (\operatorname{Pi} 163))$
> n :=round (evalf($\mathrm{x}, 50$));
$\mathrm{n}:=262537412640768744$
> evalf($\mathrm{x}-\mathrm{n}, 15$);
> evalf($\mathrm{x}-\mathrm{n}, 25$);
$>$ evalf($x-n, 35$);
0.
0.
-12
-0.7499310

2 Continued Fraction Expansion of a Real Number

For a real number x its continued fraction expansion is a sequence $\operatorname{CF}(x)=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$, having finite or infinite length, of integers a_{j}. Usually it is assumed that $a_{j}>0$ for $j>0$. How is $\mathrm{CF}(x)$ defined?
First, one observes that x may be written uniquely in the form $x=n+t$ where n is an integer and $0 \leq t<1$. One defines

$$
\operatorname{integerPart}(x)=\text { floor }(x)=n
$$

and

$$
\operatorname{fracPart}(x)=\operatorname{modOne}(x)=t
$$

If $x=n$ is an integer, then $\mathrm{CF}(x)=[n]$ is an integer sequence of length one whose sole entry is x. If x is not an integer, then $t=\operatorname{modOne}(x)>0$, and $\mathrm{CF}(x)$ is defined recursively by pre-pending $n=$ floor (x) to the sequence $\operatorname{CF}(1 / t)$.
If $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ turns out to be a finite sequence $\left[a_{0}, a_{1}, a_{2}, \ldots, a_{k}\right]$, then

$$
x=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots+\frac{1}{a_{k}}}},
$$

and, therefore, x must be a rational number (i.e., x must be the quotient of two integers). Conversely if x is rational, then by the Euclidean algorithm ${ }^{1}$ (applied to its numerator and denominator), its continued fraction must have finite length.

When $\operatorname{CF}(x)=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$, one sometimes writes

$$
x=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ldots}}},
$$

and in the case of a sequence $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ of infinite length one has

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ldots}}}=\lim _{k \rightarrow \infty}\left(a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots+\frac{1}{a_{k}}}}\right) .
$$

When $a_{j}>0$ for all $j>0$, the sequence of "partial" continued fractions, which are called the convergents ${ }^{2}$ of the continued fraction, is guaranteed to be a convergent sequence, i.e., the limit above always exists.

For more see Wikipedia: http://en.wikipedia.org/wiki/Continued_fraction

[^0]
3 Examples of Continued Fractions

1.

$$
\frac{25}{7}=[3,1,1,3]=3+\frac{1}{1+\frac{1}{1+\frac{1}{3}}}
$$

2.

$$
\frac{1+\sqrt{5}}{2}=[1,1,1,1, \ldots]=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\ldots}}}
$$

4 Continued Fractions in Maple

Maple has at least two functions for generating continued fractions:

- The confrac regime in the convert facility:
> convert (25/7, confrac);

$$
[3,1,1,3]
$$

- The function cfrac in the numtheory package:
> numtheory[cfrac] (25/7);

$>$ numtheory [cfrac] $(\exp (1), 10$, quotients);
$[2,1,2,1,1,4,1,1,6,1,1$, ...]

5 Exercise 64:9 on Rational Approximation of π

- The convergents of the continued fraction expansion of a real number are known to provide "best rational approximations" to the real number in a certain sense that may be made precise. (See, for example, Wikipedia ${ }^{3}$.)
- Convergents may be obtained with a call to the confrac regime of the convert facility by supplying a third argument for the length of the desired initial segment of the continued fraction expansion and a fourth argument for the user-supplied (and case sensitive) name of a variable in which to store the corresponding convergents.
- > convert(Pi,confrac, 10, 'partialEvals');
$[3,7,15,1,292,1,1,1,2,1]$
> partialEvals;
$\left[\begin{array}{lllllllll}333 & 355 & 103993 & 104348 & 208341 & 312689 & 833719 & 1146408 \\ {[3,22 / 7,} & ---, & ---, & ------, & ------, & ------, & ------ & ------, & -------]\end{array}\right.$
- Conclude that the best rational approximation to π of the kind provided by the convergents of its continued fraction expansion, with denominator smaller than 1000, is

$$
\frac{355}{113}
$$

[^1]
[^0]: ${ }^{1}$ URI: http://en.wikipedia.org/wiki/Euclidean_algorithm
 ${ }^{2}$ Reference target for key: "cvgts"

[^1]: ${ }^{3}$ URI: http://en.wikipedia.org/wiki/Continued_fraction\#Best_rational_approximations

