Cryptography Using Congruences

Math 502 Supplement

February 26, 2008
Maple handles strings as a type. There is two-way conversion of strings to lists of numbers (based on character ASCII codes):

```
> s := "And then it started like a guilty thing upon a fearful summons.":
> v := convert(s,'bytes'):
> nops(v);
> op(1,v), op(2,v), op(63,v);
    65, 110, 46
> convert(v,'bytes');
    "And then it started like a guilty thing upon a fearful summons."
```

Congruence-based cryptography in the direction of the method known as RSA treats these number lists as lists of numbers modulo m for some suitably large modulus m. One takes some large power of each number in a number list. Encryption is enabled when one finds a pair (d, e) of these exponents for a given m such that the operation of taking the e-th power inverts the operation of taking the d-th power.

```
> pm := (x,m,k) -> x &^ k mod m:
> pm(257,19781,41);
> pm(19128,19781,761);
    19128
```

For the modulus $m=19781$ the pair $(d, e)=(761,41)$ is a pair of such exponents.

```
> w:=map(pm,v,19781,41):
> nops(w);
> op(1,w), op(2,w), op(63,w);
            6727, 18700, 10230
> vv:=map(pm,w,19781,761):
> convert(vv,'bytes');
    "And then it started like a guilty thing upon a fearful summons."
```

The 95 printable ASCII codes have values in the range from 32 to 126 (hexadecimal $20-7 \mathrm{E}$). If one works with these as unencoded numeric values, one will then want any prime factor of m to be larger than 126. Consider the case where m is a prime p. By Fermat's theorem $a^{p-1} \equiv 1(\bmod p)$ for each $a \not \equiv 0(\bmod p)$, or $a^{p} \equiv a(\bmod p)$ for all a. It follows that if $r \equiv s$ $(\bmod p-1)$ and $r, s \geq 0$, then $a^{r} \equiv a^{s}(\bmod p)$ for all a. In the case that $m=p$ is prime, one wants a pair (d, e) such that $d e \equiv 1(\bmod p-1)$. This makes it necessary that d, e both be coprime to $p-1$. For a given e that is coprime to $p-1$ there is a unique such $d \bmod p-1$.

For example, with $m=p=131$, one has $p-1=130=2 \cdot 5 \cdot 13$. Then $e=77=7 \cdot 11$ is coprime to $p-1$.

```
> msolve(77*x=1,130);
{x = 103}
```

Therefore, $d=103$ may be paired with $e=77$ when working $\bmod 131$.
This generalizes to the case where $m=p_{1} \ldots p_{n}$ is the product of distinct primes p_{1}, \ldots, p_{n}. In this case a congruence mod m is equivalent to simultaneous congruences modulo each of the primes p_{j}. Thus, with $u=\operatorname{lcm}\left(p_{1}-1, \ldots, p_{n}-1\right)$ if $r \equiv s(\bmod u)$ and $r, s \geq 0$, then $a^{r} \equiv a^{s}$ $(\bmod m)$ for all a. Thus, for a given e that is coprime to u one finds d as the unique solution of the congruence $e x \equiv 1(\bmod u)$.

