MAT 424/524
 Midterm WarmUp

Informal Exercises

October 16, 2002

1. Let V be the vector space of all polynomials of degree at most 3 with coefficients in the field F. Let $\varphi \in \operatorname{End}(V)$ be defined for each $f \in V$ by

$$
\phi(f(t))=t f^{\prime \prime}(t)
$$

where $f^{\prime \prime}$ denotes the second derivative of f. What is the matrix of φ with respect to the basis $\left\{1, t, t^{2}, t^{3}\right\}$ of $V ?$
2. Let \mathbf{R}^{4} denote 4-dimensional column space over the field \mathbf{R} of real numbers. Let S be the subset of \mathbf{R}^{4} consisting of the two vectors $v_{1}=(2,-1,-1,1)$ and $v_{2}=(1,-2,4,2)$, and let W be the subspace of the dual space of \mathbf{R}^{4} spanned by the two linear forms $f_{1}(x)=$ $x_{1}-2 x_{2}+3 x_{3}-x_{4}$ and $f_{2}(x)=2 x_{1}-x_{3}+x_{4}$.
(a) Find a basis of the the pre-annihilator of W.
(b) Find a basis of the annihilator of S.
3. Let F be a field, and let $P(t)$ be a member of the ring $F[t]$ of polynomials with coefficients in F. What is the dimension of the quotient space

$$
F[t] / P(t) F[t] ?
$$

4. Let U be the set of matrices A in the vector space $\mathrm{M}_{3}(F)$ (of all 3×3 matrices in the field $F)$ for which $\operatorname{trace}(A)=0$.
(a) Show that trace: $\mathrm{M}_{3}(F) \longrightarrow F$ is a linear map.
(b) What is the image of trace : $\mathrm{M}_{3}(F) \longrightarrow F$?
(c) Explain why U is a linear subspace of $\mathrm{M}_{3}(F)$.
(d) Find the dimension of U without first finding a basis of U.
(e) Find a basis of U.
5. For $x, y \in F^{n}$ let

$$
B(x, y)=\sum_{i=1}^{n} x_{i} y_{i}
$$

Observe that for each y the map $x \mapsto B(x, y)$ is a linear form on V, and, therefore, the map $y \mapsto B(, y)$ is a linear map $\lambda: V \longrightarrow V^{*}$.
(a) Prove that this map λ is an isomorphism.
(b) Does the construction of λ involve choice?
6. Let V be a finite-dimensional vector space over a field F, and let T be a subset of the dual space V^{*}. Recall that T has a pre-annihilator that is a subspace of V and also an annihilator that is a subspace of the second dual $V^{* *}$. If α_{V} denotes the natural isomorphism $V \longrightarrow V^{* *}$, prove that the image under α_{V} of the pre-annihilator of T is the annihilator of T.

