MAT 424/524 Midterm WarmUp

Informal Exercises

October 16, 2002

1. Let V be the vector space of all polynomials of degree at most 3 with coefficients in the field F. Let $\varphi \in \text{End}(V)$ be defined for each $f \in V$ by

$$\phi(f(t)) = tf''(t) ,$$

where f'' denotes the second derivative of f. What is the matrix of φ with respect to the basis $\{1, t, t^2, t^3\}$ of V?

- 2. Let \mathbf{R}^4 denote 4-dimensional column space over the field \mathbf{R} of real numbers. Let S be the subset of \mathbf{R}^4 consisting of the two vectors $v_1 = (2, -1, -1, 1)$ and $v_2 = (1, -2, 4, 2)$, and let W be the subspace of the dual space of \mathbf{R}^4 spanned by the two linear forms $f_1(x) = x_1 2x_2 + 3x_3 x_4$ and $f_2(x) = 2x_1 x_3 + x_4$.
 - (a) Find a basis of the the pre-annihilator of W.
 - (b) Find a basis of the annihilator of S.
- 3. Let F be a field, and let P(t) be a member of the ring F[t] of polynomials with coefficients in F. What is the dimension of the quotient space

$$F[t]/P(t)F[t]$$
?

- 4. Let U be the set of matrices A in the vector space $M_3(F)$ (of all 3×3 matrices in the field F) for which trace(A) = 0.
 - (a) Show that trace : $M_3(F) \longrightarrow F$ is a linear map.
 - (b) What is the image of trace : $M_3(F) \longrightarrow F$?
 - (c) Explain why U is a linear subspace of $M_3(F)$.
 - (d) Find the dimension of U without first finding a basis of U.
 - (e) Find a basis of U.
- 5. For $x, y \in F^n$ let

$$B(x,y) = \sum_{i=1}^{n} x_i y_i$$

Observe that for each y the map $x \mapsto B(x, y)$ is a linear form on V, and, therefore, the map $y \mapsto B(\ , y)$ is a linear map $\lambda : V \longrightarrow V^*$.

- (a) Prove that this map λ is an isomorphism.
- (b) Does the construction of λ involve choice?
- 6. Let V be a finite-dimensional vector space over a field F, and let T be a subset of the dual space V^* . Recall that T has a pre-annihilator that is a subspace of V and also an annihilator that is a subspace of the second dual V^{**} . If α_V denotes the natural isomorphism $V \longrightarrow V^{**}$, prove that the image under α_V of the pre-annihilator of T is the annihilator of T.