Advanced Linear Algebra (Math 424/524) Assignment No. 5

Due December 11, 2002

1. Let F be a field. For P a polynomial in $F[t]$ let V_{P} denote the quotient $F[t] / P F[t]$. Given P and Q in $F[t]$ one defines a linear map

$$
\phi: V_{P Q} \longrightarrow V_{P} \times V_{Q}
$$

by

$$
\phi(h \bmod P Q)=(h \bmod P, h \bmod Q)
$$

What is the dimension of the kernel of ϕ ?
2. For each of the following rational matrices find the minimal and characteristic polynomials and find a direct sum of companion matrices that is similar to the given matrix:
(a) $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
(b) $\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$
(c) $\left(\begin{array}{rrr}0 & 1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0\end{array}\right)$
(d) $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$
(e) $\left(\begin{array}{rrrrr}1 & 2 & 0 & -1 & 3 \\ 0 & 0 & -2 & 1 & -1 \\ -1 & 3 & 1 & 0 & 0 \\ 2 & -1 & 3 & -1 & 2 \\ 1 & -1 & -3 & -2 & 0\end{array}\right)$
3. Let M be the matrix of polynomials in $F[t]$

$$
M=\left(\begin{array}{rr}
t^{3}+t^{2}-2 t & t^{3}-2 t+1 \\
t^{3}-1 & t^{3}-t^{2}
\end{array}\right)
$$

(a) Find a diagonal matrix of successively divisible polynomials that can be obtained from M by (restricted) row and column operations.
(b) What is the dimension of the quotient space

$$
F[t]^{2} / M F[t]^{2} ?
$$

4. Let M be the matrix of polynomials from the previous problem.
(a) Is there a 2×2 matrix A for which $t \cdot 1-A$ is (restricted) row and column equivalent to M ?
(b) Find an $N \times N$ matrix A for some N in the field F for which the endomorphism "multiplication by t " of the quotient space in part (b) of the previous problem is isomorphic to the endomorphism of F^{N} given by A.
5. For given λ in the field F let $J=J(\lambda)$ be the $r \times r$ matrix

$$
\left(\begin{array}{cccccc}
\lambda & 1 & 0 & 0 & \ldots & 0 \\
0 & \lambda & 1 & 0 & \ldots & 0 \\
0 & 0 & \lambda & 1 & & \vdots \\
\vdots & \vdots & & & & 0 \\
& & & & \lambda & 1 \\
0 & 0 & 0 & \ldots & 0 & \lambda
\end{array}\right)
$$

Find a basis for the vector space $F[t] /(t-\lambda)^{r} F[t]$ in which the matrix J represents the endomorphism "multiplication by t ".

