Advanced Linear Algebra (Math 424/524) Assignment No. 5

Due December 11, 2002

1. Let F be a field. For P a polynomial in F[t] let V_P denote the quotient F[t]/PF[t]. Given P and Q in F[t] one defines a linear map

$$\phi: V_{PQ} \longrightarrow V_P \times V_Q$$

by

 $\phi(h \operatorname{mod} PQ) = (h \operatorname{mod} P, h \operatorname{mod} Q) .$

What is the dimension of the kernel of ϕ ?

2. For each of the following *rational* matrices find the minimal and characteristic polynomials and find a direct sum of companion matrices that is similar to the given matrix:

(a)
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ (c) $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}$
(d) $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ (e) $\begin{pmatrix} 1 & 2 & 0 & -1 & 3 \\ 0 & 0 & -2 & 1 & -1 \\ -1 & 3 & 1 & 0 & 0 \\ 2 & -1 & 3 & -1 & 2 \\ 1 & -1 & -3 & -2 & 0 \end{pmatrix}$

3. Let M be the matrix of polynomials in F[t]

$$M = \left(\begin{array}{ccc} t^3 + t^2 - 2t & t^3 - 2t + 1 \\ t^3 - 1 & t^3 - t^2 \end{array} \right) \; .$$

- (a) Find a diagonal matrix of successively divisible polynomials that can be obtained from M by (restricted) row and column operations.
- (b) What is the dimension of the quotient space

$$F[t]^2/MF[t]^2$$
 ?

- 4. Let M be the matrix of polynomials from the previous problem.
 - (a) Is there a 2×2 matrix A for which $t \cdot 1 A$ is (restricted) row and column equivalent to M?
 - (b) Find an $N \times N$ matrix A for some N in the field F for which the endomorphism "multiplication by t" of the quotient space in part (b) of the previous problem is isomorphic to the endomorphism of F^N given by A.
- 5. For given λ in the field F let $J = J(\lambda)$ be the $r \times r$ matrix

$\left(\right)$	$\lambda \\ 0$	$\frac{1}{\lambda}$	$\begin{array}{c} 0 \\ 1 \end{array}$	0 0	· · · ·	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
	0	0	λ	1		:
	÷	÷				0
	0	0	0		$\lambda \\ 0$	$\begin{pmatrix} 1 \\ \lambda \end{pmatrix}$

Find a basis for the vector space $F[t]/(t - \lambda)^r F[t]$ in which the matrix J represents the endomorphism "multiplication by t".