Advanced Linear Algebra Math 424/524

Assignment No. 4

Due December 2, 2002

1. Let V be a n-dimensional vector space over a field F, \mathbf{v} be a basis of V, and \mathbf{w} the dual basis of V^{*}. Let \mathbf{v}^{\prime} be another basis of V and \mathbf{w}^{\prime} the basis of V^{*} dual to it. If the change of basis between \mathbf{v} and \mathbf{v}^{\prime}, regarded as rows of vectors, is given by $\mathbf{v}^{\prime}=\mathbf{v} A$ for an $n \times n$ matrix A and if also for V^{*} one has $\mathbf{w}^{\prime}=\mathbf{w} B$, how is the matrix B related to the matrix A?
2. Let $f_{j}: V_{j} \longrightarrow W_{j}$ for $j=1,2$ be linear maps.
(a) Explain briefly why there is a unique linear map

$$
f_{1} \otimes f_{2}: V_{1} \otimes V_{2} \longrightarrow W_{1} \otimes W_{2}
$$

for which

$$
\left(f_{1} \otimes f_{2}\right)\left(v_{1} \otimes v_{2}\right)=f_{1}\left(v_{1}\right) \otimes f_{2}\left(v_{2}\right) \text { whenever } \quad v_{1} \in V_{1}, v_{2} \in V_{2}
$$

(b) If for chosen bases in V_{j}, W_{j}, the linear map f_{j} has the matrix

$$
\left(\begin{array}{cc}
a_{j} & b_{j} \\
c_{j} & d_{j}
\end{array}\right) \text { for } j=1,2
$$

what is the matrix of $f_{1} \otimes f_{2}$ with respect to suitable orderings of the product bases for $V_{1} \otimes V_{2}$ and $W_{1} \otimes W_{2}$?
3. Let \mathbf{R} denote the field of real numbers. What more familiar description may be used to describe the $d^{\text {th }}$ symmetric power $S^{d}\left(\left(\mathbf{R}^{2}\right)^{*}\right)$ of the dual space of the real plane \mathbf{R}^{2} to a student who has completed the calculus sequence?
4. Let \mathbf{Q} denote the field of rational numbers, $P(t)$ the polynomial $t^{5}+5 t^{4}+6 t^{3}+7 t^{2}+8 t+9$ in $\mathbf{Q}[t]$, and let

$$
V=\mathbf{Q}[t] / P(t) \mathbf{Q}[t]
$$

(a) Prove that V has dimension 5 over \mathbf{Q} by exhibiting a basis of V.
(b) If π denotes the quotient map from $\mathbf{Q}[t]$ to V, and τ denotes the linear endomorphism of $\mathbf{Q}[t]$ defined by $\tau(F(t))=t F(t)$ for $F \in \mathbf{Q}[t]$, explain briefly why there is a linear endomorphism φ of V such that $\varphi \circ \pi=\pi \circ \tau$.
(c) Find the matrix of φ with respect to the basis of V determined in response to the first part of this exercise.
(d) What is the characteristic polynomial of the matrix found in the previous part of this exercise?
5. Let V and W be vector spaces over a field F. There is a natural linear map

$$
\rho: V \otimes W \longrightarrow \operatorname{Hom}\left(V^{*}, W\right)
$$

that is uniquely determined by specifying for $v \in V, w \in W$

$$
\rho(v \otimes w)=\left\{f \mapsto f(v) w \text { for } \quad f \in V^{*}\right\} .
$$

Prove that ρ is an isomorphism if V and W are finite-dimensional.

