Advanced Linear Algebra Math 424/524

Assignment No. 3

Due November 13, 2002

1. Find a 2×2 real diagonal matrix D for which there exists a matrix U that is orthogonal relative to the standard inner product (the "dot" product) on \mathbf{R}^{2} and satisfying

$$
U^{t}\left(\begin{array}{rr}
1 & 2 \\
2 & -1
\end{array}\right) U=D
$$

2. Find an invertible 2×2 matrix U of rational numbers and a rational diagonal matrix D such that

$$
U^{t}\left(\begin{array}{rr}
1 & 2 \\
2 & -1
\end{array}\right) U=D
$$

3. When $2 \neq 0$ in the field F, find an invertible 2×2 matrix U in F such that

$$
U^{t}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) U=\left(\begin{array}{cc}
1 / 9 & 0 \\
0 & -1 / 9
\end{array}\right)
$$

4. Find a 3×3 rational matrix that is orthogonal for the standard inner product on \mathbf{R}^{3} with the property that none of its entries has absolute value 1.
5. Find an invertible matrix U such that

$$
U^{t}\left(\begin{array}{rrrr}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) U=\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right)
$$

6. What conditions in the definition of inner product are not satisfied by the bilinear form Θ on the space $\mathrm{M}_{n}(\mathbf{R})$ of $n \times n$ real matrices defined by

$$
\Theta(M, N)=\operatorname{trace}(M N)
$$

7. For a field F in which $2=0$ give an example of a bilinear form on F^{3} that is skew-symmetric but not alternating.
8. Let b be the bilinear form on F^{3} given by

$$
b(x, y)=x^{t}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) y
$$

(a) Explain very briefly why b is dualizing.
(b) Find the left orthogonal complement of U, i.e.,

$$
\left\{v \in F^{3} \mid b(v, u)=0 \text { for each } u \in U\right\}
$$

in each of the three cases when U is a coordinate axis.
(c) When $2 \neq 0$ in F, find a symmetric bilinear form s and an alternating bilinear form a on F^{3} such that $b=s+a$.

