Advanced Linear Algebra Math 424/524

Assignment No. 2

Due October 16, 2002

- 1. Prove that if two matrices of the same size over a field are both in reduced row echelon form and are also row equivalent, i.e., each may be obtained from the other by a finite sequence of elementary row operations, then they must be equal.
- 2. Let **R** denote the field of real numbers.
 - (a) What is the linear subspace of \mathbb{R}^n spanned by the set of columns $x \in \mathbb{R}^n$ having the property that every coordinate of x is non-zero?
 - (b) What is the linear subspace of the vector space $M_n(\mathbf{R})$ of $n \times n$ real matrices that is spanned by the set of invertible $n \times n$ matrices?
- 3. Let F be a field, and let V denote the vector space F[t] of polynomials in the variable t with coefficients in F. Let a be a given element of F, and let U_a be the linear subspace of V consisting of all polynomials divisible by the polynomial t a. Does the isomophism class of the quotient space V/U_a depend on the choice of a?

Hint: Consider the linear map $s_a : F[t] \to F$ defined by $s_a(f) = f(a)$.

4. If F is any field, let V be the vector space $M_n(F)$ of $n \times n$ matrices over F. For given $A, B \in V$ define an F-linear endomorphism $\varphi_{A,B}$ of V by

$$\varphi_{A,B}(M) = AMB$$

- (a) For what pairs A, B is the endomorphism $\varphi_{A,B}$ equal to 0?
- (b) Is every endomorphism of V equal to $\varphi_{A,B}$ for some pair A, B?
- 5. Let X be a vector space over a field F, and let ψ be a linear map from X to X for which

$$\psi \circ \psi = \psi$$
 .

Let V be the subspace of X that is the image of ψ , let j be the inclusion of V in X, and let $q: X \to V$ be the "projection" of X on V that yields the canonical factorization $\psi = j \circ q$ of ψ through its image.

Define a subspace U of X and a linear map $p: X \to U$ so that, with $i: U \to X$ the inclusion of U in X, one has the relations among i, j, p, and q characterizing an isomorphism of X with the Cartesian product $U \times V$, i.e.,

$$pi = 1$$

$$pj = 0$$

$$qi = 0$$

$$qj = 1$$

$$ip + jq = 1$$