Advanced Linear Algebra Math 424/524

Assignment No. 2

Due October 16, 2002

1. Prove that if two matrices of the same size over a field are both in reduced row echelon form and are also row equivalent, i.e., each may be obtained from the other by a finite sequence of elementary row operations, then they must be equal.
2. Let \mathbf{R} denote the field of real numbers.
(a) What is the linear subspace of \mathbf{R}^{n} spanned by the set of columns $x \in \mathbf{R}^{n}$ having the property that every coordinate of x is non-zero?
(b) What is the linear subspace of the vector space $\mathrm{M}_{n}(\mathbf{R})$ of $n \times n$ real matrices that is spanned by the set of invertible $n \times n$ matrices?
3. Let F be a field, and let V denote the vector space $F[t]$ of polynomials in the variable t with coefficients in F. Let a be a given element of F, and let U_{a} be the linear subspace of V consisting of all polynomials divisible by the polynomial $t-a$. Does the isomophism class of the quotient space V / U_{a} depend on the choice of a ?
Hint: Consider the linear map $s_{a}: F[t] \rightarrow F$ defined by $s_{a}(f)=f(a)$.
4. If F is any field, let V be the vector space $\mathrm{M}_{n}(F)$ of $n \times n$ matrices over F. For given $A, B \in V$ define an F-linear endomorphism $\varphi_{A, B}$ of V by

$$
\varphi_{A, B}(M)=A M B
$$

(a) For what pairs A, B is the endomorphism $\varphi_{A, B}$ equal to 0 ?
(b) Is every endomorphism of V equal to $\varphi_{A, B}$ for some pair A, B ?
5. Let X be a vector space over a field F, and let ψ be a linear map from X to X for which

$$
\psi \circ \psi=\psi
$$

Let V be the subspace of X that is the image of ψ, let j be the inclusion of V in X, and let $q: X \rightarrow V$ be the "projection" of X on V that yields the canonical factorization $\psi=j \circ q$ of ψ through its image.
Define a subspace U of X and a linear map $p: X \rightarrow U$ so that, with $i: U \rightarrow X$ the inclusion of U in X, one has the relations among i, j, p, and q characterizing an isomorphism of X with the Cartesian product $U \times V$, i.e.,

$$
\begin{aligned}
p i & =1 \\
p j & =0 \\
q i & =0 \\
q j & =1 \\
i p+j q & =1
\end{aligned}
$$

