Advanced Linear Algebra Math 424/524

Assignment No. 1

Due October 2, 2002

- 1. Let F be any field, and let V be the vector space of all polynomials of degree at most d in the variable t with coefficients in F. Exhibit an explicit isomorphism between V and the column space F^n for suitably chosen n.
- 2. Let F be a field, and let F_n^m be the vector space of all $m \times n$ matrices with entries in F. If V and W are vector spaces over F, then Hom(V, W) denotes the set of all F-linear maps from V to W. Hom(V, W) is itself a vector space over F under pointwise addition of linear maps and pointwise multiplication of a linear map by a scalar from F.

Define

$$\Phi: F_n^m \longrightarrow \operatorname{Hom}(F^n, F^m)$$

by defining $\Phi(M)$ to be the linear map for which

$$(\Phi(M))(X) = MX$$

for each $X \in F^n$. Show that Φ is linear. (Proof of the linearity of $\Phi(M)$ for given M is not asked here.)

- 3. Let $f: V \longrightarrow W$ be an injective linear map of vector spaces over the field F. Prove that if elements v_1, v_2, \ldots, v_r in V are linearly independent, then $f(v_1), f(v_2), \ldots, f(v_r)$ are linearly independent elements of W.
- 4. Let F[t] be the vector space of polynomials in one variable t over the field F, and let $D: F[t] \to F[t]$ be the map defined by ¹

$$D\left(\sum c_j t^j\right) = \sum j c_j t^{j-1} .$$

- (a) Show that $D(f \cdot g) = f \cdot D(g) + D(f) \cdot g$.
- (b) Compute the kernel and image of D when F is the real field **R**.
- (c) Compute the kernel and image of D when F is the field \mathbf{F}_2 of integers mod 2.
- 5. How many *rational* scalars c are there for which the matrices

$$\left(\begin{array}{cc}c&0\\0&c\end{array}\right)\quad\text{and}\quad\left(\begin{array}{cc}c&1\\0&c\end{array}\right)$$

are similar? Justify your answer.

¹In this expression j as an index is an integer. How does one interpret jc_j given that c_j is in F? As long as j is a non-negative integer, the meaning of jc_j is " c_j added to itself j times in the field". If j < 0, then jc_j is understood as the negative of $(-j)c_j$. Consistent with that j itself can be interpreted in F as $j \cdot 1$ where 1 denotes the multiplicative identity of F. Thus, in \mathbf{F}_2 : j = 0 if j is even, while j = 1 if j is odd.