Advanced Linear Algebra Math 424/524

Assignment No. 1

Due October 2, 2002

1. Let F be any field, and let V be the vector space of all polynomials of degree at most d in the variable t with coefficients in F. Exhibit an explicit isomorphism between V and the column space F^{n} for suitably chosen n.
2. Let F be a field, and let F_{n}^{m} be the vector space of all $m \times n$ matrices with entries in F. If V and W are vector spaces over F, then $\operatorname{Hom}(V, W)$ denotes the set of all F-linear maps from V to W. $\operatorname{Hom}(V, W)$ is itself a vector space over F under pointwise addition of linear maps and pointwise multiplication of a linear map by a scalar from F.
Define

$$
\Phi: F_{n}^{m} \longrightarrow \operatorname{Hom}\left(F^{n}, F^{m}\right)
$$

by defining $\Phi(M)$ to be the linear map for which

$$
(\Phi(M))(X)=M X
$$

for each $X \in F^{n}$. Show that Φ is linear. (Proof of the linearity of $\Phi(M)$ for given M is not asked here.)
3. Let $f: V \longrightarrow W$ be an injective linear map of vector spaces over the field F. Prove that if elements $v_{1}, v_{2}, \ldots, v_{r}$ in V are linearly independent, then $f\left(v_{1}\right), f\left(v_{2}\right), \ldots, f\left(v_{r}\right)$ are linearly independent elements of W.
4. Let $F[t]$ be the vector space of polynomials in one variable t over the field F, and let $D: F[t] \rightarrow F[t]$ be the map defined by ${ }^{1}$

$$
D\left(\sum c_{j} t^{j}\right)=\sum j c_{j} t^{j-1}
$$

(a) Show that $D(f \cdot g)=f \cdot D(g)+D(f) \cdot g$.
(b) Compute the kernel and image of D when F is the real field \mathbf{R}.
(c) Compute the kernel and image of D when F is the field \mathbf{F}_{2} of integers mod 2.
5. How many rational scalars c are there for which the matrices

$$
\left(\begin{array}{cc}
c & 0 \\
0 & c
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
c & 1 \\
0 & c
\end{array}\right)
$$

are similar? Justify your answer.

[^0]
[^0]: ${ }^{1}$ In this expression j as an index is an integer. How does one interpret $j c_{j}$ given that c_{j} is in F ? As long as j is a non-negative integer, the meaning of $j c_{j}$ is " c_{j} added to itself j times in the field". If $j<0$, then $j c_{j}$ is understood as the negative of $(-j) c_{j}$. Consistent with that j itself can be interpreted in F as $j \cdot 1$ where 1 denotes the multiplicative identity of F. Thus, in $\mathbf{F}_{2}: j=0$ if j is even, while $j=1$ if j is odd.

