The Affine Matrix of an Affine Transformation

Recall from the study of linear algebra that if f is a linear map from \mathbb{R}^n to itself and $v = \{v_1, \ldots, v_n\}$ is a linear basis of \mathbb{R}^n, then the matrix of f with respect to the basis v is the $n \times n$ matrix M whose j-th column, for $1 \leq j \leq n$, is the column of coordinates of $f(v_j)$ relative to v, i.e.,

$$f(v_j) = \sum_{i=1}^{n} M_{ij} v_i, \quad 1 \leq j \leq n.$$

Definition. If $p = \{p_0, \ldots, p_n\}$ is an affine basis of \mathbb{R}^n and f is an affine map from \mathbb{R}^n to itself then the affine matrix of f with respect to the affine basis p is the $(n + 1) \times (n + 1)$ matrix M whose j-th column, for $0 \leq j \leq n$, is the column of barycentric coordinates of $f(p_j)$ relative to p, i.e.,

$$f(p_j) = \sum_{i=0}^{n} M_{ij} p_i \quad \text{with} \quad \sum_{i=0}^{n} M_{ij} = 1, \quad 0 \leq j \leq n.$$

Proposition. If p is a point of \mathbb{R}^n having barycentric coordinates (x_0, \ldots, x_n) relative to the affine basis p and if f is an affine map having matrix M relative to p, then $f(p)$ is the point of \mathbb{R}^n having barycentric coordinates (y_0, \ldots, y_n) relative to p where the vectors x and y, when regarded as columns, are related by the formula $y = Mx$.

Proof. Because f preserves barycentric combinations and $p = x_0 p_0 + \ldots x_n p_n$ with $x_0 + \ldots + x_n = 1$, it follows that

$$f(p) = \sum_j x_j f(p_j) = \sum_j x_j \left(\sum_i M_{ij} p_i \right) = \sum_{ij} M_{ij} x_j p_i = \sum_{i} \left(\sum_j M_{ij} x_j \right) p_i = \sum_i y_i p_i \quad \text{where} \quad y = Mx.$$

One needs to check that the last line is indeed a barycentric combination of the p_i, i.e., that $y_0 + \ldots + y_n = 1$. This follows from the fact that y is the x-barycentric combination of the (weight 1) columns of M.

Exercises due Monday, March 15

1. Show that the map $\varphi : \mathbb{R}^2 \to \mathbb{R}^3$ given by $(x_1, x_2) \mapsto (x_1, x_2, 1 - x_1 - x_2)$ is an affine map.

2. Conclude from the first exercise that if τ is translation of \mathbb{R}^2 by the vector $a = (a_1, a_2)$, then $\varphi(\tau(x)) = \varphi(x) + \hat{a}$ where \hat{a} is the weight 0 triple (a_1, a_2, a_3) with $a_3 = -a_1 - a_2$.

3. (Continuing) Find the affine matrix of the translation τ.

4. Find the affine matrix of the half turn of \mathbb{R}^2 about the point c, i.e., the affine transformation $x \mapsto 2c - x$.

5. Show that if M is the affine matrix of the affine transformation $f(x) = Ux + v$ of \mathbb{R}^2, then $\det M = \det U$.