Discussion

• **Theorem.** Every orientation-preserving isometry of \(\mathbb{R}^2 \) with a fixed point is a rotation.

 *Proof.*** Let \(f \) be a given orientation-preserving isometry of \(\mathbb{R}^2 \) with fixed point \(c \). Let \(\tau \) be “translation by \(c \), i.e., \(\tau(x) = x + c \). Then the isometry \(g = \tau^{-1} \circ f \circ \tau \) has the property \(g(0) = 0 \). Since \(g \) is an affine map that fixes the origin, \(g \) must be a linear transformation of \(\mathbb{R}^2 \) that is distance-preserving. Therefore, \(g(x) = Ux \) for some \(2 \times 2 \) orthogonal matrix \(U \). By an exercise in the previous assignment \(U \) must be one of the matrices formed using \(\cos \theta \) and \(\sin \theta \) for some value of \(\theta \), and since \(g \) is orientation-preserving, \(\det U > 0 \) with the result that \(U \) must be the specific matrix

\[
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}
\]

Therefore, \(g \) is the rotation about the origin through the angle \(\theta \), and \(f \) is the rotation about the point \(c \) through the angle \(\theta \).

• **Theorem.** Every orientation-reversing isometry of \(\mathbb{R}^2 \) with a given fixed point is the reflection in some line containing the fixed point.

 *Proof.*** The argument is very similar to the preceding argument except that the \(2 \times 2 \) orthogonal matrix \(U \) satisfies \(\det(U) < 0 \) since the isometry is orientation-reversing, and, therefore,

\[
U = \begin{pmatrix}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{pmatrix}
\]

which is the matrix of reflection in the line through the origin forming the angle \(\theta/2 \) with the positive first coordinate axis.

• **Proposition** Every rotation of \(\mathbb{R}^2 \) is the composition of the reflections in two lines passing through its center.

 *Proof.*** For example, let \(\sigma_1 \) be reflection in the horizontal line through the center and let \(\sigma_2 \) be reflection in the line through the center forming angle \(\theta/2 \) with the horizontal, where \(\theta \) is the angle of rotation about the center. Then \(\sigma_2 \circ \sigma_1 \) is the given rotation.

Exercises due Monday, February 23

1. Prove: If an isometry \(f \) of the plane is a rotation about the point \(p \), then for every point \(x \) in the plane \(p \) must lie on the perpendicular bisector of the line segment from \(x \) to \(f(x) \).

2. Show that every translation of \(\mathbb{R}^2 \) is the composition of the reflections in two parallel lines that are perpendicular to the direction of translation.

3. Show that the composition of a rotation with the reflection in a line through the center of the rotation is another such reflection.

4. Let \(A, B, C, \) and \(P \) be four points in a plane, no three of which are collinear. Let \(PA \) meet \(BC \) at \(D \), \(PB \) meet \(CA \) at \(E \), and \(PC \) meet \(AB \) at \(F \). Prove that \(D, E, \) and \(F \) are not collinear.