Discussion

- **Terminology Revision.** Any weight 1 linear combination of given points may be called a *barycentric combination* of those points, regardless of whether the coefficients are non-negative.

- **Definition.** A sequence of \(r + 1 \) points \(p_0, p_1, \ldots, p_r \) is called *barycentrically independent* if none of them is a barycentric combination of the others.

- **Examples.**
 1. Any two distinct points \(P, Q \) are barycentrically independent. If \(P \neq Q \), the set of barycentric combinations of \(P \) and \(Q \) is the line through \(P \) and \(Q \).
 2. Three points \(A, B, C \) are barycentrically independent if and only if none lies on the line determined by the other two. Thus, the vertices of a triangle are barycentrically independent.
 3. In \(\mathbb{R}^3 \) the four vertices of a tetrahedron are barycentrically independent.

- **Proposition.** A sequence of \(r + 1 \) points \(p_0, \ldots, p_r \) is barycentrically independent if and only for given \(a_0, \ldots, a_r \) and given \(b_0, \ldots, b_r \) with \(a_0 + \ldots + a_r = 1 \) and \(b_0 + \ldots + b_r = 1 \) the following statement is true:
 \[
a_0 p_0 + \ldots + a_r p_r = b_0 p_0 + \ldots + b_r p_r \quad \text{if and only if} \quad a_0 = b_0, \ldots, a_r = b_r.
 \]

- **Proof.** Obtain this from corresponding facts about linear independence.

- **Theorem.** If \(p_0, p_1, \ldots, p_n \) are barycentrically independent points of \(n \)-dimensional Euclidean space \(\mathbb{R}^n \), and \(q_0, q_1, \ldots, q_n \) are any points of \(\mathbb{R}^n \), then there is one and only one affine map \(f \) from \(\mathbb{R}^n \) to \(\mathbb{R}^m \) for which \(f(p_0) = q_0, f(p_1) = q_1, \ldots, f(p_n) = q_n \).

 Proof. Use the fact that there is a unique linear map taking prescribed values at the members of a basis of \(\mathbb{R}^n \).

- **Theorem** If a map \(f \) from \(\mathbb{R}^n \) to \(\mathbb{R}^m \) preserves barycentric combinations, then it must be an affine map.

 Proof. Use two facts: (1) an affine map that carries 0 to 0 must be linear, and (2) a linear map is always given by a matrix.

Exercises due Friday, January 30

1. Let \(A, B, C, \) and \(D \) be four points in the plane \(\mathbb{R}^2 \). Show that the polygonal path (sequence of line segments) from \(A \) to \(B \), from \(B \) to \(C \), then to \(D \), and back to \(A \) is a parallelogram if and only if \(A - B + C - D = 0 \).

2. Show that an affine transformation of the plane carries a parallelogram to a parallelogram.

3. Show that there is one and only one affine transformation of the plane carrying a given parallelogram to another given parallelogram in a given vertex-matching way.

4. Show that any affine transformation of the plane carries the point where the diagonals of a given parallelogram meet to the point where the diagonals of the image parallelogram meet.

5. Explain why an affine transformation of the 3-dimensional space \(\mathbb{R}^3 \) must always carry a tetrahedron to a tetrahedron.