Transformation Geometry - Math 331

April 26, 2004

Transformation Groups: III

Definition. If G is a group of transformations of a set X, g an element of G, S a subset of X, and $g(S)$ the set to which S is carried by g, one says that g stabilizes S if $g(S)=S$. The set of all transformations g in G that stabilize S is called the stabilizer of S in G. A subset F of G stabilizes S if it is contained in the stabilizer of S in G, i.e., if $g(S)=S$ for every g in F.
Example. If γ is a glide reflection of the plane \mathbf{R}^{2}, l its axis, and G the set of isometries of the form γ^{k} for $k=0, \pm 1, \pm 2, \ldots$, then G is a group that stabilizes l and is a proper subgroup of the stabilizer of l in the group of all isometries of \mathbf{R}^{2}.
Proposition 1. For any subset S of X the stabilizer of S in G is a subgroup of G.
Proposition 2. If G is a group of transformations of X, S a subset of X, g an element of G, $T=g(S)$, and H the stabilizer of S in G, then the stabilizer of T in G is the conjugate of H by g, i.e., the subgroup

$$
g H g^{-1}=\left\{g h g^{-1} \mid h \in H\right\} .
$$

Definition. If G is a group and H a subgroup of G, H is normal in G if $g \mathrm{Hg}^{-1}=H$ for every g in G.
Definition. If G is a group of transformations of a set X and S a subset of X that is stabilized by G, one says that G is transitive on S if for each pair x, y of points of S there is at least one element g in G such that $y=g(x) . G$ is simply transitive on S if for each pair x, y of points of S there is exactly one element g in G such that $y=g(x)$.
Example. The isotropy group at the origin in the group of isometries of \mathbf{R}^{2} stabilizes the unit circle and is transitive on the unit circle but not simple transitive on the unit circle.
Example. The group of translations of \mathbf{R}^{n} is simply transitive on \mathbf{R}^{n}.

Assignment for Wednesday, April 28

1. If G is a group of transformations of a set X and S is a subset of X that is stabilized by G, does it then follow that G is a group of transformations of S ?
2. What subsets of \mathbf{R}^{3} are stabilized by the isotropy group of the Euclidean group at the origin?
3. What is the stabilizer of the first coordinate axis in the group of all isometries of \mathbf{R}^{2} ?
4. Prove Propostion 1.
5. Prove Propostion 2.
6. Let G be a group of transformations of a set X with G transitive on X, and let x_{0} be a given point of X. Prove that if the isotropy group of G at x_{0} is a normal subgroup of G, then it consists of only the identity transformation of X.
7. Show that the group of translations of \mathbf{R}^{n} is normal in both the isometry group of degree n and the affine group of degree n, but that the isometry group of degree n is not normal in the affine group of degree n.
