Transformation Geometry — Math 331

March 12, 2004

The Affine Matrix of an Affine Transformation

Recall from the study of linear algebra that if f is a linear map from \mathbf{R}^n to itself and $\mathbf{v} = \{v_1, \ldots, v_n\}$ is a linear basis of \mathbf{R}^n , then the matrix of f with respect to the basis \mathbf{v} is the $n \times n$ matrix M whose j-th column, for $1 \leq j \leq n$, is the column of coordinates of $f(v_j)$ relative to \mathbf{v} , i.e.,

$$f(v_j) = \sum_{i=1}^n M_{ij} v_i, \ 1 \le j \le n$$

Definition. If $\mathbf{p} = \{p_0, \ldots, p_n\}$ is an affine basis of \mathbf{R}^n and f is an affine map from \mathbf{R}^n to itself then the affine matrix of f with respect to the affine basis \mathbf{p} is the $(n + 1) \times (n + 1)$ matrix M whose j-th column, for $0 \le j \le n$, is the column of barycentric coordinates of $f(p_j)$ relative to \mathbf{p} , i.e.,

$$f(p_j) = \sum_{i=0}^n M_{ij} p_i$$
 with $\sum_{i=0}^n M_{ij} = 1, 0 \le j \le n$.

Proposition. If p is a point of \mathbf{R}^n having barycentric coordinates (x_0, \ldots, x_n) relative to the affine basis \mathbf{p} and if f is an affine map having matrix M relative to \mathbf{p} , then f(p) is the point of \mathbf{R}^n having barycentric coordinates (y_0, \ldots, y_n) relative to \mathbf{p} where the vectors x and y, when regarded as columns, are related by the formula y = Mx.

Proof. Because f preserves barycentric combinations and $p = x_0 p_0 + \ldots + x_n p_n$ with $x_0 + \ldots + x_n = 1$, it follows that

$$f(p) = \sum_{j} x_{j} f(p_{j}) = \sum_{j} x_{j} \left(\sum_{i} M_{ij} p_{i} \right)$$
$$= \sum_{ij} M_{ij} x_{j} p_{i} = \sum_{i} \left(\sum_{j} M_{ij} x_{j} \right) p_{i}$$
$$= \sum_{i} y_{i} p_{i} \text{ where } y = Mx$$

One needs to check that the last line is indeed a barycentric combination of the p_i , i.e., that $y_0 + \ldots + y_n = 1$. This follows from the fact that y is the x-barycentric combination of the (weight 1) columns of M

Exercises due Monday, March 15

- 1. Show that the map $\varphi : \mathbf{R}^2 \to \mathbf{R}^3$ given by $(x_1, x_2) \mapsto (x_1, x_2, 1 x_1 x_2)$ is an affine map.
- 2. Conclude from the first exercise that if τ is translation of \mathbf{R}^2 by the vector $a = (a_1, a_2)$, then $\varphi(\tau(x)) = \varphi(x) + \tilde{a}$ where \tilde{a} is the weight 0 triple (a_1, a_2, a_3) with $a_3 = -a_1 - a_2$.
- 3. (Continuing) Find the affine matrix of the translation τ .
- 4. Find the affine matrix of the half turn of \mathbf{R}^2 about the point c, i.e., the affine transformation $x \mapsto 2c x$.
- 5. Show that if M is the affine matrix of the affine transformation f(x) = Ux + v of \mathbf{R}^2 , then det $M = \det U$.