Transformation Geometry - Math 331

March 12, 2004

The Affine Matrix of an Affine Transformation

Recall from the study of linear algebra that if f is a linear map from \mathbf{R}^{n} to itself and $\mathbf{v}=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ is a linear basis of \mathbf{R}^{n}, then the matrix of f with respect to the basis \mathbf{v} is the $n \times n$ matrix M whose j-th column, for $1 \leq j \leq n$, is the column of coordinates of $f\left(v_{j}\right)$ relative to \mathbf{v}, i.e.,

$$
f\left(v_{j}\right)=\sum_{i=1}^{n} M_{i j} v_{i}, 1 \leq j \leq n .
$$

Definition. If $\mathbf{p}=\left\{p_{0}, \ldots, p_{n}\right\}$ is an affine basis of \mathbf{R}^{n} and f is an affine map from \mathbf{R}^{n} to itself then the affine matrix of f with respect to the affine basis \mathbf{p} is the $(n+1) \times(n+1)$ matrix M whose j-th column, for $0 \leq j \leq n$, is the column of barycentric coordinates of $f\left(p_{j}\right)$ relative to \mathbf{p}, i.e.,

$$
f\left(p_{j}\right)=\sum_{i=0}^{n} M_{i j} p_{i} \text { with } \sum_{i=0}^{n} M_{i j}=1,0 \leq j \leq n .
$$

Proposition. If p is a point of \mathbf{R}^{n} having barycentric coordinates $\left(x_{0}, \ldots, x_{n}\right)$ relative to the affine basis \mathbf{p} and if f is an affine map having matrix M relative to \mathbf{p}, then $f(p)$ is the point of \mathbf{R}^{n} having barycentric coordinates $\left(y_{0}, \ldots, y_{n}\right)$ relative to \mathbf{p} where the vectors x and y, when regarded as columns, are related by the formula $y=M x$.

Proof. Because f preserves barycentric combinations and $p=x_{0} p_{0}+\ldots x_{n} p_{n}$ with $x_{0}+\ldots+x_{n}=$ 1, it follows that

$$
\begin{aligned}
f(p) & =\sum_{j} x_{j} f\left(p_{j}\right)=\sum_{j} x_{j}\left(\sum_{i} M_{i j} p_{i}\right) \\
& =\sum_{i j} M_{i j} x_{j} p_{i}=\sum_{i}\left(\sum_{j} M_{i j} x_{j}\right) p_{i} \\
& =\sum_{i} y_{i} p_{i} \text { where } y=M x
\end{aligned}
$$

One needs to check that the last line is indeed a barycentric combination of the p_{i}, i.e., that $y_{0}+\ldots+y_{n}=1$. This follows from the fact that y is the x-barycentric combination of the (weight 1) columns of M

Exercises due Monday, March 15

1. Show that the map $\varphi: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ given by $\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}, x_{2}, 1-x_{1}-x_{2}\right)$ is an affine map.
2. Conclude from the first exercise that if τ is translation of \mathbf{R}^{2} by the vector $a=\left(a_{1}, a_{2}\right)$, then $\varphi(\tau(x))=\varphi(x)+\tilde{a}$ where \tilde{a} is the weight 0 triple $\left(a_{1}, a_{2}, a_{3}\right)$ with $a_{3}=-a_{1}-a_{2}$.
3. (Continuing) Find the affine matrix of the translation τ.
4. Find the affine matrix of the half turn of \mathbf{R}^{2} about the point c, i.e., the affine transformation $x \mapsto 2 c-x$.
5. Show that if M is the affine matrix of the affine transformation $f(x)=U x+v$ of \mathbf{R}^{2}, then $\operatorname{det} M=\operatorname{det} U$.
