Transformation Geometry — Math 331

March 1, 2004

Reflections and Glide Reflections

An isometry is orientation-reversing if and only if relative to Cartesian coordinates it has the form f(x) = Ux + v where U is a reflection matrix, i.e., an orthogonal matrix of determinant -1.

Proposition. If U is a 2 × 2 orthogonal matrix with determinant -1, then the linear transformation $\sigma(x) = Ux$ is the reflection in a line through the origin, and the following statements hold:

- 1. $1 U^2 = (1 + U)(1 U) = (1 U)(1 + U) = 0.$
- 2. Any vector v of the form (1+U)w for some vector w lies on the axis of σ .
- 3. Any vector v of the form (1-U)w for some vector w is perpendicular to the axis of σ .

Proof. It is elementary (see the assignment due February 20) that U has the form

$$U = \left(\begin{array}{cc} a & b \\ b & -a \end{array}\right)$$

where $a^2 + b^2 = 1$. Since both $U^{-1} = {}^tU$ and ${}^tU = U$, clearly $U^2 = 1$, and, therefore, (1+U)(1-U) = (1-U)(1+U) = 0. If v = (1+U)w, then (1-U)v = (1-U)(1+U)w = 0, hence, Uv = v, and, therefore, v lies on the axis of σ . If, on the other hand v = (1-U)w, then by similar reasoning Uv = -v, which characterizes vectors v perpendicular to the axis of σ .

Proposition. Let f = Ux + v be an orientation-reversing isometry, and let

$$v' = \frac{1}{2}(1-U)v$$
 and $v'' = \frac{1}{2}(1+U)v$

Then f is the composition of the isometry $\sigma(x) = Ux + v'$, which is a reflection with axis parallel to the axis of the reflection $x \mapsto Ux$, followed by the translation $\tau(x) = x + v''$ by the vector v'', which is parallel to the axis of σ .

Proof. Clearly, v' + v'' = v, and, therefore, $f = \tau \circ \sigma$. Since v' is perpendicular to the axis of $x \mapsto Ux$, translation by v' is the composition of the reflections in two lines parallel to the axis of $x \mapsto Ux$, and one of those two lines may be chosen to be the axis of $x \mapsto Ux$ and then σ is seen to be the reflection in the other of the two parallel lines. From this follows:

Theorem Let f = Ux + v be an orientation-reversing isometry. Then f is a reflection if and only if Uv = -v and is a glide reflection otherwise.

Exercises due Wednesday, March 3

1. Let f be the affine transformation of the plane defined by

$$f(x) = \begin{pmatrix} 3/5 & 4/5 \\ 4/5 & -3/5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

- (a) What points x of the plane are "fixed" by f, i.e., satisfy f(x) = x?
- (b) What lines L in the plane are "stabilized" by f, i.e., satisfy the condition that f(x) is on L if x is on L?
- (c) Find a reflection σ and a translation τ parallel to the axis of σ such that $f = \tau \circ \sigma$.
- 2. Explain briefly why the composition of any four reflections may always be written as the composition of two reflections.
- 3. Two triangles ΔABC and $\Delta A'B'C'$ are, by definition, *congruent* if there is an isometry f for which the vertices of the one triangle are carried to the vertices of the other. If ΔABC and $\Delta A'B'C'$ are congruent, then how many isometries f of the first with the second are there when
 - (a) ΔABC is equilateral.
 - (b) The sides BC and CA have the same length, which is different from the length of AB.
 - (c) No two sides of ΔABC have the same length.