Transformation Geometry - Math 331

March 1, 2004

Reflections and Glide Reflections

An isometry is orientation-reversing if and only if relative to Cartesian coordinates it has the form $f(x)=U x+v$ where U is a reflection matrix, i.e., an orthogonal matrix of determinant -1 .
Proposition. If U is a 2×2 orthogonal matrix with determinant -1 , then the linear transformation $\sigma(x)=U x$ is the reflection in a line through the origin, and the following statements hold:

1. $1-U^{2}=(1+U)(1-U)=(1-U)(1+U)=0$.
2. Any vector v of the form $(1+U) w$ for some vector w lies on the axis of σ.
3. Any vector v of the form $(1-U) w$ for some vector w is perpendicular to the axis of σ.

Proof. It is elementary (see the assignment due February 20) that U has the form

$$
U=\left(\begin{array}{rr}
a & b \\
b & -a
\end{array}\right)
$$

where $a^{2}+b^{2}=1$. Since both $U^{-1}={ }^{t} U$ and ${ }^{t} U=U$, clearly $U^{2}=1$, and, therefore, $(1+U)(1-U)=(1-U)(1+U)=0$. If $v=(1+U) w$, then $(1-U) v=(1-U)(1+U) w=0$, hence, $U v=v$, and, therefore, v lies on the axis of σ. If, on the other hand $v=(1-U) w$, then by similar reasoning $U v=-v$, which characterizes vectors v perpendicular to the axis of σ.

Proposition. Let $f=U x+v$ be an orientation-reversing isometry, and let

$$
v^{\prime}=\frac{1}{2}(1-U) v \quad \text { and } \quad v^{\prime \prime}=\frac{1}{2}(1+U) v .
$$

Then f is the composition of the isometry $\sigma(x)=U x+v^{\prime}$, which is a reflection with axis parallel to the axis of the reflection $x \mapsto U x$, followed by the translation $\tau(x)=x+v^{\prime \prime}$ by the vector $v^{\prime \prime}$, which is parallel to the axis of σ.
Proof. Clearly, $v^{\prime}+v^{\prime \prime}=v$, and, therefore, $f=\tau \circ \sigma$. Since v^{\prime} is perpendicular to the axis of $x \mapsto U x$, translation by v^{\prime} is the composition of the reflections in two lines parallel to the axis of $x \mapsto U x$, and one of those two lines may be chosen to be the axis of $x \mapsto U x$ and then σ is seen to be the reflection in the other of the two parallel lines. From this follows:
Theorem Let $f=U x+v$ be an orientation-reversing isometry. Then f is a reflection if and only if $U v=-v$ and is a glide reflection otherwise.

Exercises due Wednesday, March 3

1. Let f be the affine transformation of the plane defined by

$$
f(x)=\left(\begin{array}{rr}
3 / 5 & 4 / 5 \\
4 / 5 & -3 / 5
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{1}{2}
$$

(a) What points x of the plane are "fixed" by f, i.e., satisfy $f(x)=x$?
(b) What lines L in the plane are "stabilized" by f, i.e., satisfy the condition that $f(x)$ is on L if x is on L ?
(c) Find a reflection σ and a translation τ parallel to the axis of σ such that $f=\tau \circ \sigma$.
2. Explain briefly why the composition of any four reflections may always be written as the composition of two reflections.
3. Two triangles $\Delta A B C$ and $\Delta A^{\prime} B^{\prime} C^{\prime}$ are, by definition, congruent if there is an isometry f for which the vertices of the one triangle are carried to the vertices of the other. If $\Delta A B C$ and $\Delta A^{\prime} B^{\prime} C^{\prime}$ are congruent, then how many isometries f of the first with the second are there when
(a) $\triangle A B C$ is equilateral.
(b) The sides $B C$ and $C A$ have the same length, which is different from the length of $A B$.
(c) No two sides of $\triangle A B C$ have the same length.

