Transformation Geometry - Math 331

February 25, 2004

Discussion

- Theorem. Every orientation-preserving isometry of \mathbf{R}^{2} without a fixed point is a translation.

Proof. Let f be a given orientation-preserving isometry of \mathbf{R}^{2}. Since f is an affine transformation, $f(x)=U x+v$ for some invertible matrix U and some vector v. Since f is an isometry, U is an orthogonal matrix and since f is orientation-preserving, $\operatorname{det} U=1$ and, in fact, as in the argument for characterizing rotations,

$$
U=\left(\begin{array}{rr}
a & -b \\
b & a
\end{array}\right)
$$

where $a^{2}+b^{2}=1$. A point x will be a fixed point of f if and only if $U x+v=x$, or, equivalently, x is a solution of the linear system $(1-U) x=v$. So f certainly has a fixed point when the matrix $1-U$ is invertible, which is the case when its determinant $(1-a)^{2}+b^{2} \neq 0$. Therefore, f can only fail to have a unique fixed point when $a=1$ and $b=0$, i.e., when $U=1$ is the identity matrix and f, therefore, is a translation.

- Theorem. Every orientation-reversing isometry of \mathbf{R}^{2} without a fixed point is a glide reflection.
Proof. Let $f=U x+v$ be a given orientation-reversing isometry without a fixed point. Since $\operatorname{det} U=-1$, as in the argument for characterizing reflections,

$$
U=\left(\begin{array}{rr}
a & b \\
b & -a
\end{array}\right)
$$

where $a^{2}+b^{2}=1$. With this condition on U the matrix $1-U$ has determinant 0 and, in fact, has rank 1. Therefore, from the nature of U alone the fixed point equation $(1-U) x=v$ has a solution x if and only if v is in the one-dimensional column space of $1-U$. Since it is given that f has no fixed point, the vector v is not in the column space of $1-U$, which means that $U v \neq-v$. Let l be the line through the origin that is the axis of the reflection $x \mapsto U x$. The condition obtained on v is equivalent to the statement that v is not perpendicular to l. Now decompose $v=v^{\prime}+v^{\prime \prime}$ where v^{\prime} is perpendicular to l and $v^{\prime \prime}$ is parallel to l. Then $f(x)=\left(U x+v^{\prime}\right)+v^{\prime \prime}$, which shows that f is the composite obtained from translation by $v^{\prime \prime}$ following the reflection $x \mapsto U x+v^{\prime}$ having axis parallel to the line l. Therefore f meets the condition characterizing glide reflections.

Exercises due Friday, February 27

1. Let f be rotation about the point $(1,0)$ through the angle $\pi / 4$, and let g be rotation about the point $(0,1)$ through the angle $\pi / 6$. Show that $g \circ f$ is a rotation, and find its center and its angle of rotation.
2. When is it the case that the composition of two rotations about different centers is a rotation?
3. What type of isometry is the composition of a reflection with the half turn, i.e., rotation through the angle π, about a point not on the axis of the reflection?
4. If three lines l_{1}, l_{2}, l_{3} intersect so as to form a triangle, what type of isometry is the composition $\sigma_{3} \circ \sigma_{2} \circ \sigma_{1}$ of the reflections in those lines?
