Transformation Geometry - Math 331

February 9, 2004

Discussion

- Definition: By affine basis of \mathbf{R}^{n} is meant a sequence $P_{0}, P_{1}, \ldots, P_{n}$ of $n+1$ barycentrically independent points of \mathbf{R}^{n}.
- Proposition. Any point of \mathbf{R}^{n} is uniquely representable as a barycentric combination of the points in a given affine basis of \mathbf{R}^{n}.
Proof. Given P and an affine basis $P_{0}, P_{1}, \ldots, P_{n}$ use the fact from linear algebra that the vectors $P_{1}-P_{0}, \ldots, P_{n}-P_{0}$ form a linear basis of \mathbf{R}^{n} and that $P-P_{0}$ is uniquely a linear combination of those vectors.
- Terminology. The coefficients used to represent a point P as a barycentric combination of $P_{0}, P_{1}, \ldots, P_{n}$ are called barycentric coordinates or affine coordinates of P with respect to (or relative to) $P_{0}, P_{1}, \ldots, P_{n}$.
- Definition. Any sequence of $n+1$ numbers that is proportional to (a non-zero multiple of) a sequence of barycentric coordinates of P with respect to an affine basis $P_{0}, P_{1}, \ldots, P_{n}$ is a sequence of homogeneous coordinates of P with respect to (or relative to) $P_{0}, P_{1}, \ldots, P_{n}$.
Example. (a, b, c) is a sequence of homogeneous coordinates for the point where the angle bisectors of $\triangle A B C$ meet relative to the vertices of the triangle since $1 /(a+b+c)$ times that triple is the corresponding sequence of barycentric coordinates.
- Theorem. The point where the three altitudes of a triangle meet has homogeneous coordinates relative to the vertices of the triangle given by the areas of the three sub-triangles formed by that point and the three vertices when all of the angles in the triangle are acute.

Exercises due Wednesday, February 11

1. Let A, B, and C be the points

$$
A=(0,-1), \quad B=(3,4), \quad C=(-1,1)
$$

(a) Find the point P where the three altitudes of $\triangle A B C$ meet.
(b) Find the areas of the three triangles: $\triangle B C P, \triangle C A P$, and $\triangle A B P$.
(c) Find a triple of homogeneous coordinates for P relative to A, B, and C.
2. Show that three distinct points A, B, and C are collinear if there is a triple of numbers (u, v, w), not all zero, of weight 0 , i.e., $u+v+w=0$, such that $u A+v B+w C=0$.
3. Let $f(x)=A x$ be the linear transformation of the plane where A is the matrix

$$
A=\frac{1}{5}\left(\begin{array}{rr}
3 & 4 \\
-4 & 3
\end{array}\right) .
$$

(a) What points x of the plane are "fixed" by f, i.e., satisfy $f(x)=x$?
(b) What lines in the plane are carried by f to other lines?
(c) What lines L in the plane are "stabilized" by f, i.e., satisfy the condition that $f(x)$ is on L if x is on L ?
4. Find homogeneous coordinates relative to the vertices of a given triangle for the point where the three perpendicular bisectors of the sides of the triangle meet.
Hint: Use the fact that the perpendicular bisectors are the altitudes of the triangle whose vertices are their feet (i.e., the midpoints of the three sides).

