Transformation Geometry - Math 331

January 30, 2004

Discussion

Theorem. Let A, B, and C be non-collinear points, and let D, E, and F, respectively, be given points on the lines $B C, C A$, and $A B$, respectively, with corresponding barycentric representations $D=d^{\prime} B+d^{\prime \prime} C, E=e^{\prime} C+e^{\prime \prime} A$, and $F=f^{\prime} A+f^{\prime \prime} B$ and none of D, E, or F equal to any of A, B, or C. Then the three lines $A D, B E$, and $C F$ meet in a common point if and only if

$$
\begin{equation*}
\left(\frac{d^{\prime}}{d^{\prime \prime}}\right)\left(\frac{e^{\prime}}{e^{\prime \prime}}\right)\left(\frac{f^{\prime}}{f^{\prime \prime}}\right)=1 \tag{1}
\end{equation*}
$$

Proof. Note that none of the numbers $d^{\prime}, d^{\prime \prime}, e^{\prime}, e^{\prime \prime}, f^{\prime}, f^{\prime \prime}$ can be zero under the given hypotheses. If $P=u A+v B+w C$ (with $u+v+w=1$) is a common point on $A D, B E$, and $C F$, then by the principle of preservation of proportionality in barycentric combinations (Problem 2, Assignment due January 28) one has

$$
d^{\prime}=\frac{v}{v+w}, \quad d^{\prime \prime}=\frac{w}{v+w}, \quad e^{\prime}=\frac{w}{w+u}, \quad e^{\prime \prime}=\frac{u}{w+u}, \quad f^{\prime}=\frac{u}{u+v}, \quad \text { and } \quad f^{\prime \prime}=\frac{v}{u+v}
$$

Therefore, $d^{\prime} / d^{\prime \prime}=v / w, e^{\prime} / e^{\prime \prime}=w / u$, and $f^{\prime} / f^{\prime \prime}=u / v$, and then clearly the product of these three values is 1 .
Conversely, assume that $\left(d^{\prime} / d^{\prime \prime}\right)\left(e^{\prime} / e^{\prime \prime}\right)\left(f^{\prime} / f^{\prime \prime}\right)=1$. The question now is whether there is a triple of numbers $\left(u^{\prime}, v^{\prime}, w^{\prime}\right)$, none zero, such that the three pairs $\left(v^{\prime}, w^{\prime}\right),\left(w^{\prime}, u^{\prime}\right)$, and $\left(u^{\prime}, v^{\prime}\right)$, respectively, are parallel to $\left(d^{\prime}, d^{\prime \prime}\right),\left(e^{\prime}, e^{\prime \prime}\right)$, and $\left(f^{\prime}, f^{\prime \prime}\right)$. For if that is the case, then with

$$
u=\frac{u^{\prime}}{u^{\prime}+v^{\prime}+w^{\prime}}, \quad v=\frac{v^{\prime}}{u^{\prime}+v^{\prime}+w^{\prime}}, \quad \text { and } \quad w=\frac{w^{\prime}}{u^{\prime}+v^{\prime}+w^{\prime}}
$$

the lines drawn from the point $P=u A+v B+c W$ to the vertices meet the sides of the triangle in the points D, E, F by the principle of preservation of proportionality in barycentric combinations. For the existence of such $u^{\prime}, v^{\prime}, w^{\prime}$ let

$$
u^{\prime}=f^{\prime}, \quad v^{\prime}=f^{\prime \prime}, \text { and } w^{\prime}=\frac{d^{\prime \prime} f^{\prime \prime}}{d^{\prime}}
$$

Then clearly $\left(u^{\prime}, v^{\prime}\right)$ is parallel to $\left(f^{\prime}, f^{\prime \prime}\right)$ and $\left(v^{\prime}, w^{\prime}\right)=\left(f^{\prime \prime} / d^{\prime}\right)\left(d^{\prime}, d^{\prime \prime}\right)$ is parallel to $\left(d^{\prime}, d^{\prime \prime}\right)$. Finally,

$$
\left(w^{\prime}, u^{\prime}\right)=\left(\frac{d^{\prime \prime} f^{\prime \prime}}{d^{\prime}}, f^{\prime}\right)=\frac{f^{\prime}}{e^{\prime \prime}}\left(e^{\prime}, e^{\prime \prime}\right)
$$

by formula (1) and, therefore, $\left(w^{\prime}, u^{\prime}\right)$ is parallel to $\left(e^{\prime}, e^{\prime \prime}\right)$.

Exercises due Monday, February 2

1. For what values of c are the three points $(c,-1),(3,2)$, and $(-2,1)$ barycentrically dependent? What is the geometric significance of this issue?
2. Prove Ceva's Theorem: If P is a point in the interior of the triangle determined by three non-collinear points A, B, and C and if D, E, and F, respectively, are the points where the lines from P to the points A, B, and C, respectively, meet the lines $B C, C A$, and $A B$, respectively, then one has the relation

$$
\frac{|B D|}{|D C|} \frac{|C E|}{|E A|} \frac{|A F|}{|F B|}=1
$$

among the lengths of the six line segments.
3. Prove: If A, B, and C are three non-collinear points in a plane and l is a line in that plane meeting the lines $B C, C A$, and $A B$, respectively in points D, E, and F, respectively, having barycentric coordinate pairs $\left(d^{\prime}, d^{\prime \prime}\right),\left(e^{\prime}, e^{\prime \prime}\right)$, and $\left(f^{\prime}, f^{\prime \prime}\right)$, respectively, with respect to A, B, C, then one has the relation

$$
\left(\frac{d^{\prime}}{d^{\prime \prime}}\right)\left(\frac{e^{\prime}}{e^{\prime \prime}}\right)\left(\frac{f^{\prime}}{f^{\prime \prime}}\right)=-1
$$

