Transformation Geometry - Math 331

January 28, 2004

Discussion

- Terminology Revision. Any weight 1 linear combination of given points may be called a barycentric combination of those points, regardless of whether the coefficients are nonnegative.
- Definition. A sequence of $r+1$ points $p_{0}, p_{1}, \ldots, p_{r}$ is called barycentrically independent if none of them is a barycentric combination of the others.

- Examples.

1. Any two distinct points P, Q are barycentrically independent. If $P \neq Q$, the set of barycentric combinations of P and Q is the line through P and Q.
2. Three points A, B, C are barycentrically independent if and only if none lies on the line determined by the other two. Thus, the vertices of a triangle are barycentrically independent.
3. In \mathbf{R}^{3} the four vertices of a tetrahedron are barycentrically independent.

- Proposition. A sequence of $r+1$ points p_{0}, \ldots, p_{r} is barycentrically independent if and only for given a_{0}, \ldots, a_{r} and given b_{0}, \ldots, b_{r} with $a_{0}+\ldots+a_{r}=1$ and $b_{0}+\ldots+b_{r}=1$ the following statement is true:

$$
a_{0} p_{0}+\ldots+a_{r} p_{r}=b_{0} p_{0}+\ldots+b_{r} p_{r} \text { if and only if } a_{0}=b_{0}, \ldots, a_{r}=b_{r}
$$

- Proof. Obtain this from corresponding facts about linear independence.
- Theorem. If $p_{0}, p_{1}, \ldots, p_{n}$ are barycentrically independent points of n-dimensional Euclidean space \mathbf{R}^{n}, and $q_{0}, q_{1}, \ldots, q_{n}$ are any points of \mathbf{R}^{m}, then there is one and only one affine map f from \mathbf{R}^{n} to \mathbf{R}^{m} for which $f\left(p_{0}\right)=q_{0}, f\left(p_{1}\right)=q_{1}, \ldots, f\left(p_{n}\right)=q_{n}$.
Proof. Use the fact that there is a unique linear map taking prescribed values at the members of a basis of \mathbf{R}^{n}.
- Theorem If a map f from \mathbf{R}^{n} to \mathbf{R}^{m} preserves barycentric combinations, then it must be an affine map.
Proof. Use two facts: (1) an affine map that carries 0 to 0 must be linear, and (2) a linear map is always given by a matrix.

Exercises due Friday, January 30

1. Let A, B, C, and D be four points in the plane \mathbf{R}^{2}. Show that the polygonal path (sequence of line segments) from A to B, from there to C, then to D, and back to A is a parallelogram if and only if $A-B+C-D=0$.
2. Show that an affine transformation of the plane carries a parallelogram to a parallelogram.
3. Show that there is one and only one affine transformation of the plane carrying a given parallelogram to another given parallelogram in a given vertex-matching way.
4. Show that any affine transformation of the plane carries the point where the diagonals of a given parallelogram meet to the point where the diagonals of the image parallelogram meet.
5. Explain why an affine transformation of the 3-dimensional space \mathbf{R}^{3} must always carry a tetrahedron to a tetrahedron.
