Transformation Geometry - Math 331

January 26, 2004
revised February 1, 2004

Comment on exercises

Let A, B, and C be the points in the Cartesian plane that are given by

$$
A=(0,-1), \quad B=(3,4), \quad \text { and } C=(-1,1)
$$

- The point where the perpendicular bisectors of $\Delta A B C$ meet is the point $u A+v B+w C=$ (43/22, 27/22) where

$$
u=\frac{175}{242}, \quad v=\frac{135}{242}, \quad \text { and } \quad w=-\frac{34}{121}
$$

This coefficient vector is the unique vector (u, v, w) with $u+v+w=1$ that is parallel to the vector ($\sin \alpha \cos \alpha, \sin \beta \cos \beta, \sin \gamma \cos \gamma)$ where α, β, and γ are the vertex angles in $\triangle A B C$. The common distance of the intersection point from the three vertices is $\frac{5 \sqrt{170}}{22}$.

- The point where the angle bisectors of $\triangle A B C$ meet is the point $u A+v B+w C$ where

$$
(u, v, w)=\left(\frac{a}{a+b+c}, \frac{b}{a+b+c}, \frac{c}{a+b+c}\right)
$$

with a, b, and c the lengths of the sides of $\triangle A B C$, which, respectively, are $5, \sqrt{5}$, and $\sqrt{34}$. Therefore,

$$
u A+v B+w C=\left(\frac{3 \sqrt{5}-\sqrt{34}}{5+\sqrt{5}+\sqrt{34}}, \frac{-5+4 \sqrt{5}+\sqrt{34}}{5+\sqrt{5}+\sqrt{34}}\right) .
$$

Note that by the law of sines this coefficient vector, which is parallel to the vector of lengths of sides is also parallel to the vector $(\sin \alpha, \sin \beta, \sin \gamma)$. The common distance of the intersection point from the three sides is $\frac{11}{5+\sqrt{5}+\sqrt{34}}$.

Exercises due Wednesday, January 28

The first two of the following exercises will be important for later work.

1. Prove the fulcrum principle: If A and B are different points, l the length of the segment $A B$, and $P=u A+v B$ with $u+v=1$, then the length of the segment $A P$ is $|v| l$ and the length of $B P$ is $|u| l$.
2. Prove the principle of preservation of proportionality in barycentric coordinates: If A, B, and C are three non-collinear points and $P=u A+v B+w C$ with $u+v+w=1$, then the line $A P$ meets the line $B C$ at the point $(1 /(v+w))(v B+w C)$ provided that $v+w \neq 0$ or, equivalently, $P \neq A$ and the line $A P$ is not parallel to the line $B C$.
3. Let A, B, and C be three non-collinear points, D a point of the line segment $A C$, and E a point of the line segment $B C$. Use barycentric coordinates relative to A, B, and C to show that the line segments $A E$ and $B D$ meet.
