Classical Algebra

Written Assignment No. 4

due Tuesday, November 18, 2008

Directions

Written assignments must be typeset.

While it is neither necessary nor desirable to show small details of computation, you must indicate what you are doing, give major steps in computation, and explain any reasoning used.

Accuracy is important. With 5 problems in an assignment worth 10 points, there is limited room for partial credit on a problem.

Problems

1. Find the order mod 67 of
(a) 2 .
(b) 3 .
(c) 6 .
2. Find the smallest positive integer that is primitive modulo 479 . (Note that 479 is prime.)
3. Find the quotient and remainder when the polynomial $x^{7}-1$ is divided by the polynomial $x^{3}-2 x-1$ and these polynomials are regarded as having coefficients that are
(a) rational numbers.
(b) integers modulo 3.
(c) integers modulo 2 .
4. Find the smallest integer $u>1$ such that for every integer x one has

$$
x^{11 u} \equiv x \quad(\bmod 1591)
$$

5 . Let a and m be integers with $m \geq 2$.
(a) Give an example of an integer $a \geq 2$ that is primitive modulo $m=22$.
(b) Prove that if $m=p_{1} p_{2} \ldots p_{r}$ is the product of r distinct primes with $r \geq 2$ and each $p_{j}>2$, then there is no integer a that is primitive modulo m.

