Classical Algebra

Written Assignment No. 2

due Thursday, October 12, 2006

(corrected Oct 52006 12:10 p.m.)

Directions

Written assignments must be typeset.

While it is neither necessary nor desirable to show small details of computation, you must indicate what you are doing, give major steps in computation, and explain any reasoning used.

Accuracy is important. With 5 problems in an assignment worth 5 points, there will be no room for partial credit on a problem.

If you are in the writing intensive division of the course, you must complete each written assignment in a satisfactory way. This may require re-submission, possibly more than once, after the initial evaluation.

Problems

1. Find (i) the least non-negative residue and (ii) the residue of least absolute value for 2^{213} modulo 1025.
2. Find all points (x, y) with integer coordinates on the line

$$
129 x+111 y=33
$$

3. List all solutions that are distinct mod 40 for each of the following congruences:
(a) $3 x \equiv 1(\bmod 40)$.
(b) $3 x \equiv 16(\bmod 40)$.
(c) $28 x \equiv 41(\bmod 40)$.
(d) $47 x \equiv 21(\bmod 40)$.
(e) $25 x \equiv 55(\bmod 40)$.
4. List the number of distinct solutions mod 283409 for each of the following congruences:
(a) $42 x \equiv 791(\bmod 283409)$
(b) $42 x \equiv 256(\bmod 283409)$
(c) $42 x \equiv 14(\bmod 283409)$
5. Prove that a and b have least common multiple $a b$ if there exist integers c and d such that

$$
a c+b d=1
$$

