Math 220 Assignment

December 5, 2001

The Quadratic Form Associated With a Symmetric Matrix

If S is an $n \times n$ symmetric matrix and if x is the column of coordinates of a point p in an n-dimensional vector space relative to a given basis, then the matrix product

$$
x^{\prime} S x
$$

is a 1×1 matrix whose sole entry $Q_{S}(p)$ is a scalar function of the point p that is a polynomial of degree 2 in the coordinates $x_{1}, x_{2}, \ldots, x_{n}$ of p. The function Q_{S} is called a quadratic form, and S is the matrix of the quadratic form relative to the given coordinate system.

Due Friday, December 7

1. If with a change of basis each point p that is represented in a given basis by x is represented relative to another basis by y where $x=A y$ for a given invertible matrix A, what is the matrix relative to the second basis of the quadratic form that has matrix S relative to the given basis?
2. Let $f\left(x_{1}, x_{2}\right)=2 x_{1} x_{2}$.
(a) For what 2×2 symmetric matrix S is $Q_{S}=f$?
(b) Find a basis of \mathbf{R}^{2} consisting of mutually perpendicular unit vectors relative to which the matrix of f is a diagonal matrix.
3. Let S be the 3×3 symmetric matrix

$$
\left(\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 3 & -1 \\
0 & -1 & 2
\end{array}\right) \text {. }
$$

(a) Find a diagonal matrix that represents Q_{S} relative to some basis of \mathbf{R}^{3} consisting of mutually perpendicular unit vectors.
(b) What is the largest value achieved by Q_{S} on the unit sphere $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$?

Document network location for HTML:
http://math.albany.edu:8000/math/pers/hammond/course/mat220/assgt/la011205.html

