Math 220 Assignment

November 30, 2001

The Characteristic Equation

If, relative to a given coordinate system in an n-dimensional vector space, the columns of an invertible $n \times n$ matrix A form a basis of that vector space relative to which a linear transformation that is represented in the given coordinate system by a matrix M is diagonalized, i.e., represented by a diagonal matrix D, then

$$
A^{-1} M A=D .
$$

Equivalently $M A=A D$, and, taking the $j^{\text {th }}$ column one sees that

$$
M A_{j}=(M A)_{j}=(A D)_{j}=A D_{j}=d_{j j} A_{j} .
$$

Thus, each member A_{j} of the diagonalizing basis must lie in the kernel of the linear function represented in the given coordinate system by the matrix $M-t 1_{n}$, where 1_{n} denotes the $n \times n$ identity matrix, when $t=d_{j j}$. Thus, each A_{j} may be found by finding the kernel of $M-t 1_{n}$ when $t=d_{j j}$, and the diagonal elements $d_{j j}$ of D may be found among the roots of the characteristic polynomial equation

$$
\operatorname{det}\left(M-t 1_{n}\right)=0 .
$$

Due Monday, December 3

1. Find the characteristic polynomial and its roots for each of the matrices

$$
\left(\begin{array}{rr}
3 & 4 \\
4 & -3
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{rr}
-1 & 0 \\
1 & 1
\end{array}\right)
$$

2. Let S be the 3×3 matrix

$$
\left(\begin{array}{rrr}
10 & -6 & -2 \\
-6 & 5 & -8 \\
-2 & -8 & 3
\end{array}\right)
$$

Find an orthogonal matrix U and a diagonal matrix D such that

$$
S=U D U^{-1}
$$

Document network location for HTML:
http://math.albany.edu:8000/math/pers/hammond/course/mat220/assgt/la011130.html

