Math 220 Assignment

November 26, 2001

Due Wednesday, November 28

1. Find the matrices for change of basis in both directions between the standard basis of \mathbf{R}^{3} and the basis formed by the columns of the matrix

$$
\left(\begin{array}{rrr}
3 & 6 & 2 \\
2 & -3 & 6 \\
6 & -2 & -3
\end{array}\right)
$$

2. Let f be the linear function from \mathbf{R}^{3} to \mathbf{R}^{3} that has the matrix

$$
D=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

relative to the basis of \mathbf{R}^{3} given by the columns of the matrix in the previous exercise.
(a) How many lines L passing through the origin have the properly that f carries each point of L to a point of L ?
(b) Find all points x in \mathbf{R}^{3} for which $f(x)=x$.
(c) For each of two different lines through the origin find a point on the line that is carried to another point on the same line.
3. Find the matrix of one of the two rotations through the angle $\pi / 2$ about the axis in \mathbf{R}^{3} containing the origin and the point $(1,1,1)$.

Document network location for HTML:

