Math 220 Assignment

November 19, 2001

Due Wednesday, November 21

1. Find the matrices for change of basis in both directions between the standard basis of \mathbf{R}^{3} and the basis formed by the columns of the matrix

$$
\left(\begin{array}{rrr}
3 & 2 & 4 \\
2 & -3 & 1 \\
3 & -6 & 1
\end{array}\right)
$$

2. Let f be the linear function from \mathbf{R}^{3} to \mathbf{R}^{3} given by $f(x)=M x$ where

$$
M=\left(\begin{array}{rrr}
1 & 5 & -2 \\
-2 & 4 & -3 \\
-1 & -3 & 1
\end{array}\right)
$$

Find the matrix of f relative to the basis of \mathbf{R}^{3} given by the columns of the matrix in the preceding exercise.
3. Let σ denote reflection in the plane $x+y+z=0$ (a linear function from \mathbf{R}^{3} to \mathbf{R}^{3}). Find the standard matrix of σ, i.e., the matrix of σ relative to the standard basis of \mathbf{R}^{3}.

Document network location for HTML:

