## Math 220 Assignment

November 16, 2001

## Due Monday, November 19

1. Let $P_{3}$ be the vector space of polynomials of degree at most 3 , and let $\varphi$ be the linear map from $P_{3}$ to itself that is defined by the formula

$$
(\varphi(f))(x)=\int_{0}^{x} f^{\prime}(t) d t
$$

where $f^{\prime}$ denotes the derivative of $f$. Find the matrix of $\varphi$ with respect to the basis of $P_{3}$ given by the powers of the variable.
2. Let $P_{2}$ be the vector space of polynomials of degree at most 2 . Define a scalar product (analogous to "dot" product) $\Gamma$ on $P_{2}$ with the formula

$$
\Gamma(f, g)=\int_{0}^{1} f(t) g(t) d t
$$

Find the orthogonal complement, relative to $\Gamma$, of the subspace consisting of the constant polynomials.
3. Use the Gram-Schmidt process (§ 3.4 of the text) to make an orthonormal basis for $P_{2}$, relative to the scalar product $\Gamma$ of the previous exercise, containing the constant polynomial 1.
4. Repeat the previous exercise using the inner product

$$
\Delta(f, g)=\frac{1}{2} \int_{-1}^{1} f(t) g(t) d t
$$

Document network location for HTML:

