Math 220 Assignment

October 31, 2001

Due Friday, November 2

1. Let g be the linear function from \mathbf{R}^{4} to \mathbf{R}^{5} that is defined by $g(x)=M x$ where M is the 5×4 matrix

$$
\left(\begin{array}{rrrr}
-1 & 1 & 5 & 1 \\
2 & -1 & 2 & 1 \\
1 & 0 & -2 & 2 \\
-2 & 2 & 1 & 2 \\
-4 & 3 & 8 & 1
\end{array}\right)
$$

Find the following:
(a) A basis for the kernel of g.
(b) A non-redundant list of linear equations that characterize the image of g as a subset of \mathbf{R}^{5}.
(c) A basis for the image of g.
2. Let \mathcal{P}_{2} denote the vector space of polynomials of degree 2 or less. If f is an element of \mathcal{P}_{2}, let T_{f} be the polynomial given by the formula

$$
T_{f}(x)=\frac{d}{d x} x f(x)
$$

(a) Show that the function T that is defined by

$$
T(f)=T_{f}
$$

is an abstractly linear map from \mathcal{P}_{2} to \mathcal{P}_{2}.
(b) What is the dimension of \mathcal{P}_{2} ?
(c) Find a basis of the kernel of T.
(d) Find a basis of the image of T.

Document network location for HTML:
http://math.albany.edu:8000/math/pers/hammond/course/mat220/assgt/la011031.html

