Math 220 Assignment

October 31, 2001

Due Friday, November 2

1. Let g be the linear function from \mathbf{R}^4 to \mathbf{R}^5 that is defined by g(x) = Mx where M is the 5×4 matrix

$$\begin{pmatrix} -1 & 1 & 5 & 1 \\ 2 & -1 & 2 & 1 \\ 1 & 0 & -2 & 2 \\ -2 & 2 & 1 & 2 \\ -4 & 3 & 8 & 1 \end{pmatrix}$$

Find the following:

- (a) A basis for the kernel of g.
- (b) A non-redundant list of linear equations that characterize the image of g as a subset of \mathbf{R}^5 .
- (c) A basis for the image of g.
- 2. Let \mathcal{P}_2 denote the vector space of polynomials of degree 2 or less. If f is an element of \mathcal{P}_2 , let T_f be the polynomial given by the formula

$$T_f(x) = \frac{d}{dx}xf(x)$$

(a) Show that the function T that is defined by

$$T(f) = T_f$$

is an abstractly linear map from \mathcal{P}_2 to \mathcal{P}_2 .

- (b) What is the dimension of \mathcal{P}_2 ?
- (c) Find a basis of the kernel of T.
- (d) Find a basis of the image of T.

Document network location for HTML:

http://math.albany.edu:8000/math/pers/hammond/course/mat220/assgt/la011031.html