Math 220 Assignment

October 29, 2001

Due Wednesday, October 31

1. Let f be the linear function from \mathbf{R}^5 to \mathbf{R}^5 that is defined by f(x) = Mx where M is the 5×5 matrix

1	-1	1	5	1	4
	2	-1	2	1	3
	1	0	-2	2	-1
	-2	2	1	2	0
	-4	3	8	1	5 /

.

Find the following:

- (a) A linearly independent set K of vectors in \mathbf{R}^5 such that every element of the kernel of f is a linear combination of the vectors in K.
- (b) A non-redundant list of linear equations that characterize the image of f as a subset of \mathbf{R}^5 .
- 2. Let \mathcal{P}_d denote the vector space of polynomials of degree d or less. If f is an element of \mathcal{P}_d , let I_f be the polynomial given by the formula

$$I_f(x) = \int_0^x f \quad .$$

- (a) Explain briefly why I_f is abstractly linear.
- (b) What is the kernel of I_f ?
- (c) In what set does the function I_f takes its values? (The domain of I_f is understood here to be \mathcal{P}_d .)

Document network location for HTML:

http://math.albany.edu:8000/math/pers/hammond/course/mat220/assgt/la011029.html