Math 220 Assignment

October 29, 2001

Due Wednesday, October 31

1. Let f be the linear function from \mathbf{R}^{5} to \mathbf{R}^{5} that is defined by $f(x)=M x$ where M is the 5×5 matrix

$$
\left(\begin{array}{rrrrr}
-1 & 1 & 5 & 1 & 4 \\
2 & -1 & 2 & 1 & 3 \\
1 & 0 & -2 & 2 & -1 \\
-2 & 2 & 1 & 2 & 0 \\
-4 & 3 & 8 & 1 & 5
\end{array}\right)
$$

Find the following:
(a) A linearly independent set K of vectors in \mathbf{R}^{5} such that every element of the kernel of f is a linear combination of the vectors in K.
(b) A non-redundant list of linear equations that characterize the image of f as a subset of \mathbf{R}^{5}.
2. Let \mathcal{P}_{d} denote the vector space of polynomials of degree d or less. If f is an element of \mathcal{P}_{d}, let I_{f} be the polynomial given by the formula

$$
I_{f}(x)=\int_{0}^{x} f
$$

(a) Explain briefly why I_{f} is abstractly linear.
(b) What is the kernel of I_{f} ?
(c) In what set does the function I_{f} takes its values? (The domain of I_{f} is understood here to be \mathcal{P}_{d}.)

Document network location for HTML:

