Math 220 Assignment

October 26, 2001

Due Monday, October 29

The set of polynomials

$$
f(X)=\sum_{j=0}^{d} c_{j} X^{j}=c_{0}+c_{1} X+c_{2} X^{2}+\ldots+c_{d} X^{d}
$$

of degree d (or less if c_{d} happens to be 0) may be regarded as a vector space of dimension $d+1$ by identifying a polynomial with its sequence of coefficients, i.e., the sequence $\left(c_{0}, c_{1}, c_{2}, \ldots, c_{d}\right)$ which is a vector in \mathbf{R}^{d+1}.

1. What formula from calculus expresses the value of c_{j} for $0 \leq j \leq d$ in terms of f ?
2. What rules about derivatives imply that the function D from \mathbf{R}^{d+1} to \mathbf{R}^{d+1} given by the operation

$$
f(X) \longmapsto f^{\prime}(X)
$$

is an abstractly linear function?
3. What is the kernel of D ?
4. What is the image of D ?
5. What is the matrix of D when it is expressed solely in terms of coefficients? Hint: Work it out for the special cases $d=0,1,2$, and 3 , and then surmise a pattern.

Document network location for HTML:

