Math 220 Assignment

October 15, 2001

Due Wednesday, October 17

- 1. Let f be a linear map from \mathbf{R}^3 to \mathbf{R}^3 for which
 - (a) f(1,0,0) = (1,2,3).
 - (b) f(0, 1/2, 0) = (3, 2, 1).
 - (c) f(-1, 0, 2) = (4, -6, 2).

Find all possible 3×3 matrices A for which the formula f(x) = Ax is valid for all x in \mathbb{R}^3 . *Hint:* Use the rules for abstract linearity to work out what happens under f to (0, 1, 0) and (0, 0, 1).

2. Let g be the linear map from \mathbf{R}^4 to \mathbf{R}^4 that is defined by g(x) = Bx where B is the matrix

1	1	2	-4	3
	-2	-1	-1	5
	1	3	2	-1
	1	1	-1	-1 /

.

Find a 4×4 matrix C for which the linear map h given by multiplication by C has the property that both h(g(x)) = x and g(h(y)) = y for all x and all y in \mathbb{R}^4 .

3. Could the previous exercise have been completed successfully if the given matrix B had been one of the matrices appearing in the assignment due Friday, October 12^1 ?

Document network location for HTML:

```
http://math.albany.edu:8000/math/pers/hammond/course/mat220/assgt/la011015.html
```

 $^{^{1} \}mathrm{URI:}\ \mathrm{http://math.albany.edu:8000/math/pers/hammond/course/mat220f2001/assgt/la011010.html}$