Math 220 Assignment

October 15, 2001

Due Wednesday, October 17

1. Let f be a linear map from \mathbf{R}^{3} to \mathbf{R}^{3} for which
(a) $f(1,0,0)=(1,2,3)$.
(b) $f(0,1 / 2,0)=(3,2,1)$.
(c) $f(-1,0,2)=(4,-6,2)$.

Find all possible 3×3 matrices A for which the formula $f(x)=A x$ is valid for all x in \mathbf{R}^{3}. Hint: Use the rules for abstract linearity to work out what happens under f to $(0,1,0)$ and $(0,0,1)$.
2. Let g be the linear map from \mathbf{R}^{4} to \mathbf{R}^{4} that is defined by $g(x)=B x$ where B is the matrix

$$
\left(\begin{array}{rrrr}
1 & 2 & -4 & 3 \\
-2 & -1 & -1 & 5 \\
1 & 3 & 2 & -1 \\
1 & 1 & -1 & -1
\end{array}\right)
$$

Find a 4×4 matrix C for which the linear map h given by multiplication by C has the property that both $h(g(x))=x$ and $g(h(y))=y$ for all x and all y in \mathbf{R}^{4}.
3. Could the previous exercise have been completed successfully if the given matrix B had been one of the matrices appearing in the assignment due Friday, October 12^{1} ?

Document network location for HTML:
http://math.albany.edu:8000/math/pers/hammond/course/mat220/assgt/la011015.html

[^0]
[^0]: ${ }^{1}$ URI: http://math.albany.edu:8000/math/pers/hammond/course/mat220f2001/assgt/la011010.html

