Math 220 Assignment

September 24, 2001

Assignment for Wednesday, September 26

Let G be the 4×4 matrix

$$
\left(\begin{array}{rrrr}
1 & 2 & 0 & 1 \\
-2 & -1 & 1 & 1 \\
-1 & 4 & 2 & 5 \\
5 & 7 & -1 & 2
\end{array}\right)
$$

and let f be the linear map (or function) from \mathbf{R}^{4} to \mathbf{R}^{4} defined by the formula

$$
y=f(x)=G x
$$

1. Solve each of the following systems of 4 linear equations in 4 unknowns x_{1}, x_{2}, x_{3} and x_{4}.
(a) $f(x)=(0,0,0,0)$.
(b) $f(x)=(1,-1,1,3)$ with $x_{3}=0$.
(c) $f(x)=(1,-1,1,4)$ with $x_{3}=0$.
(d) $f(x)=(1,-1,1,4)$ with $x_{3}=x_{4}=0$.
(e) $f(x)=(3,-1,2,1)$ with $x_{3}=0$.
(f) $f(x)=(3,-1,7,10)$ with $x_{3}=0$.
2. Answer the following questions:
(a) What is the kernel of f ?
(b) Find equations that characterize the image of f.
3. For each part of the first preceding problem if there are solutions find a solution s and a minimal set u, v, \ldots of vectors such that the most general solution of the system is the sum of s and an arbitrary linear combination of the vectors u, v, \ldots

Document network location for HTML:
http://math.albany.edu:8000/math/pers/hammond/course/mat220/assgt/la010924.html

