Math 220 Quiz Solution

March 6, 2008

The Question

Which sets of column indices (which are integers from 1 to 4) correspond to maximal linearly independent subsets of the set of columns of the matrix

$$
M=\left(\begin{array}{rrrr}
10 & 0 & 1 & -14 \\
-5 & -1 & 0 & 7 \\
15 & 0 & 0 & -21
\end{array}\right)
$$

Systematic Response

The RREF of M is found to be:

$$
\left(\begin{array}{rrrr}
1 & 0 & 0 & -7 / 5 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

$M x=0$ occurs when

$$
\begin{aligned}
x_{1}-(7 / 5) x_{4} & =0 \\
x_{2} & =0 \\
x_{3} & =0
\end{aligned}
$$

or

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=t\left(\begin{array}{r}
7 / 5 \\
0 \\
0 \\
1
\end{array}\right) \text { for some } t
$$

Hence,

$$
\frac{7}{5} M_{1}+M_{4}=0
$$

is, up to a scalar multiple, the only linear relation among the columns. It reflects the parallelism of column 1 and column 4. Thus, subsets of the set of column indices corresponding to maximal linearly independent sets of columns are

$$
\{1,2,3\} \text { and }\{2,3,4\} .
$$

Remark. The preceding also shows that the vector $(7 / 5,0,0,1)$ is a basis of the kernel of the linear map $f_{M}: \mathbf{R}^{4} \longrightarrow \mathbf{R}^{3}$.

An Alternative: "Winging It"

This method avoids all tedious calculation, but it's only a reasonable approach in special circumstances. Here special circumstances are (1) the appearance of vectors on coordinate axes in columns 2 and 3 and (2) the nearly obvious fact that columns 1 and 4 are parallel to each other.
Columns 2 and 3 span the plane in \mathbf{R}^{3} containing the first two axes, and, therefore, they form a basis of that plane. Neither column 1 nor column 4 is in the plane determined by the first two axes. Hence, the matrix has rank 3. Moreover, $\{1,2,3\}$ and $\{2,3,4\}$ are index sets for maximal linearly independent sets of columns. There are only two other index sets of size 3 - the size required for a maximal linearly independent subset of the set of columns in a rank 3 matrix -, and both of the other sets contain both of the two parallel columns.

