Math 220 Quiz Solution

February 28, 2008

The Quiz

Find the kernel of the linear map

$$
\mathbf{R}^{3} \xrightarrow{f} \mathbf{R}^{2}
$$

that is defined for

$$
x=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text { in } \mathbf{R}^{3}
$$

by

$$
f(x)=\left(\begin{array}{rrr}
1 & -2 & 0 \\
2 & 1 & 5
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

Recommended Solution

1. The kernel of f is the set of all x in \mathbf{R}^{3} such that $f(x)=\overrightarrow{0}$.
2. Finding this kernel amounts to solving a system of 2 linear equations in 3 variables.
3. Perform elementary row operations on the given matrix so as to maneuver it into reduced row echelon form. (Augmenting it by a zero column would be a waste of time since a zero column remains a zero column under any row operation.)

$$
\begin{array}{ll}
\left(R_{2} \rightarrow R_{2}-2 R_{1}\right) & \left(\begin{array}{rrr}
1 & -2 & 0 \\
0 & 5 & 5
\end{array}\right) \\
\left(R_{2} \rightarrow(1 / 5) R_{2}\right) & \left(\begin{array}{rrr}
1 & -2 & 0 \\
0 & 1 & 1
\end{array}\right) \\
\left(R_{1} \rightarrow R_{1}+2 R_{2}\right) & \left(\begin{array}{lrl}
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right)
\end{array}
$$

4. The resulting system of linear equations is:

$$
\begin{gathered}
\left\{\begin{array}{rll}
x_{1}+2 x_{3} & = & 0 \\
x_{2}+x_{3} & = & 0
\end{array}\right. \\
\left\{\begin{array}{lll}
x_{1}= & -2 x_{3} \\
x_{2}= & -x_{3}
\end{array}\right.
\end{gathered}
$$

5. Conclusions:

- The kernel has the parametric form

$$
x=t\left(\begin{array}{r}
-2 \\
-1 \\
1
\end{array}\right)
$$

- The kernel is the linear span (in $\left.\mathbf{R}^{3}\right)$ of $(-2,-1,1)$.

