Math 220 Review Slides on Inner Products

http://math.albany.edu/pers/hammond/course/mat220/
Course Assignments Slides

May 6, 2008

1 Inner Products

The notion of inner product

1. generalizes the "dot product" in \mathbf{R}^{n}
2. is coordinate-free
3. makes it possible in abstract contexts to speak of
(a) lengths
(b) angles

2 Abstract Inner Products

Definition. An inner product on a vector space V is a function I of two variables from V that takes scalar values and satisfies the following rules:

1. $I\left(c_{1} v_{1}+c_{2} v_{2}, v_{3}\right)=c_{1} I\left(v_{1}, v_{3}\right)+c_{2} I\left(v_{2}, v_{3}\right)$
2. $I\left(v_{3}, c_{1} v_{1}+c_{2} v_{2}\right)=c_{1} I\left(v_{3}, v_{1}\right)+c_{2} I\left(v_{3}, v_{2}\right)$
3. $I\left(v_{1}, v_{2}\right)=I\left(v_{2}, v_{1}\right)$
4. $I(v, v)>0$ provided $v \neq 0$

3 Inner Products: Example 1

Ordinary "Dot" Product

$$
V=\mathbf{R}^{n} \quad I(v, w)=v \cdot w=v_{1} w_{1}+v_{2} w_{2}+\ldots+v_{n} w_{n}
$$

4 Inner Products: Example 2

Inner Product given by a Postiive-Definite Symmetric Matrix

$$
\begin{aligned}
V & =\mathbf{R}^{2} \\
S & =\left(\begin{array}{cc}
a & b \\
b & c
\end{array}\right) \quad \text { where } a c-b^{2}>0 \text { and } a+c>0 \\
I(v, w) & ={ }^{t} v S w=a v_{1} w_{1}+b v_{1} w_{2}+b v_{2} w_{1}+c v_{2} w_{2}
\end{aligned}
$$

5 Inner Products: Example 3

$$
V=\mathcal{P}_{d}=\{\text { polynomials of degree } \leq d\}
$$

A inner product on V for each interval $a \leq t \leq b(a<b)$:

$$
I(f, g)=\int_{a}^{b} f(t) g(t) d t
$$

6 Cauchy-Schwarz Inequality

Theorem. If I is an inner product on V, then for all v, w in V

$$
|I(v, w)| \leq \sqrt{I(v, v)} \sqrt{I(w, w)}
$$

Moreover, when $v \neq 0$, equality occurs if and only if there is a scalar c such that $w=c v$.

7 Length of a vector

Relative to an inner product I :

$$
\text { length of } v=\|v\|_{I}=\sqrt{I(v, v)}
$$

8 Distance between two points

Relative to an inner product I :

$$
\text { distance from } P \text { to } Q=\|Q-P\|_{I}
$$

9 Angle between two vectors

Relative to an inner product I, when $v, w \neq 0$:

$$
\angle_{I}(v, w)=\arccos \left(\frac{I(v, w)}{\|v\|_{I}\|w\|_{I}}\right)
$$

10 Orthogonality

Perpendicularity (or orthogonality) relative to an inner product I

$$
v \perp w \text { if and only if } I(v, w)=0
$$

11 Parallelism

Relative to an inner product I

$$
v \| w \text { if and only if }|I(v, w)|=\|v\|_{I}\|w\|_{I}
$$

12 Orthonormal bases

Definition. A basis $\mathbf{v}=\left(v_{1} v_{2} \ldots v_{n}\right)$ of an n-dimensional vector space with an inner product I is an orthonormal basis relative to I if $v_{1}, v_{2}, \ldots, v_{n}$ are mutually perpendicular vectors of length 1 (relative to I).

Equivalently, relative to I,
\mathbf{v} is an orthonormal basis if and only if $I\left(v_{j}, v_{k}\right)= \begin{cases}0 & \text { if } j \neq k \\ 1 & \text { if } j=k\end{cases}$

13 Orthogonal matrices

Let U be an $n \times n$ matrix. The following conditons on U are equivalent:

1. U is an orthogonal matrix.
2. U is invertible and $U^{-1}={ }^{t} U$.
3. The n columns of U form an orthonormal basis of \mathbf{R}^{n} relative to the standard inner product (the "dot" product).
4. The n rows of U form an orthonormal basis of \mathbf{R}^{n} relative to the standard inner product.

14 Orthogonal linear maps

Definition. If V is a vector space with an inner product I and $V \xrightarrow{\varphi} V$ a linear map, φ is said to be an orthogonal linear map relative to I if φ is invertible and if one has

$$
I(\varphi(v), \varphi(w))=I(v, w) \text { for all } v, w \text { in } V
$$

Note: If V is finite-dimensional, it is redundant to require that φ should be invertible when φ is required to preserve the inner product.

15 Preservation of Distances

Theorem. If V is a vector space with an inner product I and $V \xrightarrow{\varphi} V$ a linear map, then φ is an orthogonal linear map if and only if φ is invertible and length-preserving, i.e., for each v in V one has $\|\varphi(v)\|=\|v\|$.

Note: If V is finite-dimensional, it is redundant to require that φ should be invertible when φ is required to preserve lengths.

16 Orthogonal Linear Maps and Orthogonal Matrices

Theorem. If V is an n-dimensional vector space, I an inner product on $V, V \xrightarrow{\varphi} V a$ linear map, $\boldsymbol{v}=\left(v_{1} v_{2} \ldots v_{n}\right)$ an orthonormal basis of V relative to I, and M the matrix of φ relative to \boldsymbol{v}, then φ is an orthogonal linear map relative to I if and only if M is an orthogonal matrix.

