Math 220 Class Slides

http://math.albany.edu/pers/hammond/course/mat220/
Course Assignments Slides
May 1, 2008

1 Matrix of a Linear Map for a Pair of Bases

- 3 ways to characterize the matrix of

$$
V \xrightarrow{\phi} W
$$

relative to bases

$$
\mathbf{v} \text { and } \mathbf{w}
$$

1. The transport diagram:

where

$$
f(x)=M x
$$

2.

$$
M_{i j}=i \text {-th coordinate of } f\left(v_{j}\right) \text { relative to } \mathbf{w}
$$

3.

$$
f(\mathbf{v})=\mathbf{w} M
$$

2 April 29, Exercise No. 2

Problem: Find the matrix of the reflection of \mathbf{R}^{3} in the plane

$$
6 x-2 y+3 z=0
$$

Solution:

- Let

$$
\sigma=\text { the reflection } \quad \pi=\text { projection of } \mathbf{R}^{3} \text { on the plane }
$$

-

$$
\begin{gathered}
\sigma(p)-\pi(p)=\pi(p)-p \\
\sigma=2 \pi-1
\end{gathered}
$$

$$
\lambda=\text { projection of } \mathbf{R}^{3} \text { on the normal vector } N
$$

-

$$
\pi=1-\lambda
$$

$$
\sigma=1-2 \lambda
$$

-

$$
\lambda(p)=\left(\frac{p \cdot N}{N \cdot N}\right) N \quad N=(6,-2,3)
$$

\bullet

$$
\lambda((x, y, z))=L\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \quad L=\frac{1}{49}\left(\begin{array}{rrr}
36 & -12 & 18 \\
-12 & 4 & -6 \\
18 & -6 & 9
\end{array}\right)
$$

-

$$
\text { required matrix }=1-2 L=\frac{1}{49}\left(\begin{array}{rrr}
-23 & 24 & -36 \\
24 & 41 & 12 \\
-36 & 12 & 31
\end{array}\right)
$$

3 April 29, Exercise No. 4

Problem: Let S be the 3×3 matrix

$$
\left(\begin{array}{rrr}
10 & -6 & -2 \\
-6 & 5 & -8 \\
-2 & -8 & 3
\end{array}\right)
$$

Find an orthogonal matrix U and a diagonal matrix D such that

$$
S=U D U^{-1}
$$

Solution:

- Characteristic polynomial: $X(t)=t^{3}-18 t^{2}-9 t+810$
- Eigenvalues - roots of $X(t):-6,9,15$
- Eigenvectors (in order):

$$
\begin{gathered}
\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right),\left(\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right),\left(\begin{array}{r}
2 \\
-2 \\
1
\end{array}\right) \\
D=\left(\begin{array}{rrr}
-6 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 15
\end{array}\right) \quad U=\frac{1}{3}\left(\begin{array}{rrr}
1 & 2 & 2 \\
2 & 1 & -2 \\
2 & -2 & 1
\end{array}\right)
\end{gathered}
$$

4 May 1, Exercise No. 2

Problem: Give an example of a 2×2 matrix having eigevalues 1 and -1 where the corresponding eigenvectors form the angle $\pi / 4$.

Solution:

- Begin with the diagonal matrix having 1 and -1 as eigenvalues.
\bullet

$$
D=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- $(1,0)$ and $(0,1)$ are the eigenvectors of D.
- Perform a change of basis

$$
\mathbf{v}=\mathbf{e} Q
$$

where the columns of Q form the angle $\pi / 4$.
-

$$
Q=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

-

$$
\text { required matrix } M=Q D Q^{-1}=\left(\begin{array}{cc}
1 & -2 \\
0 & -1
\end{array}\right)
$$

- Note:

1. Recall for any matrices G and H one has

$$
(G H)_{j}=G H_{j},
$$

where j as a subscript on a matrix indicates the j-th column.
2. The j-th column of a diagonal matrix is a scalar times the j-th column of the identity matrix.
3. Apply these observations to the relation

$$
M Q=Q D
$$

to understand why the columns of Q are eigenvectors of M.

5 May 1, Exercise No. 3

Problem: Show that the matrix

$$
\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right)
$$

is not similar to a diagonal matrix.

Solution:

- Characteristic polynomial: $t^{2}-4 t+4=(t-2)^{2}$
- Only one eigenvalue: 2
- Eigenspace for the eigenvalue 2 has dimension 1
- No basis consisting of eigenvectors
- Hence, not diagonalizable.

6 May 1, Exercise No. 4

Problem: Let S be the 3×3 symmetric matrix

$$
\left(\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 3 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

1. Find an orthogonal matrix U and a diagonal matrix D such that

$$
U^{-1} S U=D
$$

2. What is the largest value achieved on the unit sphere $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$ by the function

$$
h(x)={ }^{t} x S x=2 x_{1}^{2}+3 x_{2}^{2}+2 x_{3}^{2}-2 x_{1} x_{2}-2 x_{2} x_{3} ?
$$

Solution:

- Characteristic polynomial: $X(t)=t^{3}-7 t^{2}+14 t-8$
- Eigenvalues - roots of $X(t): 1,2,4$
- Eigenvectors (in order):

$$
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right)
$$

\bullet

$$
D=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4
\end{array}\right) \quad U=\left(\begin{array}{rrr}
1 / \sqrt{3} & -1 / \sqrt{2} & 1 / \sqrt{6} \\
1 / \sqrt{3} & 0 & -2 / \sqrt{6} \\
1 / \sqrt{3} & 1 / \sqrt{2} & 1 / \sqrt{6}
\end{array}\right)
$$

- Since U is an orthogonal matrix, $U v$ is on the unit sphere if and only if v is on the unit sphere.
- Write $\mathrm{x}=\mathrm{Uv}$ and compute $h(x)$ as a function of v.
- Since U is an orthogonal matrix, $U^{-1}={ }^{t} U$.
-

$$
h(x)=h(U v)={ }^{t}(U v) S(U v)={ }^{t} v^{t} U S U v={ }^{t} v D v=v_{1}^{2}+2 v_{2}^{2}+4 v_{3}^{2}
$$

- The maximum value of $h(x)=h(U v)$ when $\|v\|=\sqrt{v \cdot v}=1$ is 4 .

