Math 220 Class Slides

http://math.albany.edu/pers/hammond/course/mat220/
Course Assignments Slides

March 20, 2008

1 Matrix of a Linear Map Relative to a Pair of Bases

The transport diagram:

The linear map f between Euclidean spaces has a matrix M

$$
f(x)=f_{M}(x)=M x
$$

Definition. M is called the matrix of ϕ for the pair of bases

$$
\mathbf{v}=\left(v_{1} v_{2} \ldots v_{n}\right) \text { and } \mathbf{w}=\left(w_{1} w_{2} \ldots w_{m}\right)
$$

2 A Characterization of the Matrix

3 Matrix for a $\pi / 2$ Rotation in \mathbf{R}^{3}

- Question. If P is the plane in \mathbf{R}^{3} that is the linear span of the vectors

$$
v_{1}=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right), \quad v_{2}=\left(\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right)
$$

and ρ is the rotation in space through $\pi / 2$ about the axis through the origin that is perpendicular to P, specify a basis $\mathbf{v}=\left(v_{1} v_{2} v_{3}\right)$ of \mathbf{R}^{3} relative to which the matrix of ρ is relatively simple.

- Answer. There is slight ambiguity since it is not possible to distinguish between clockwise and counterclockwise.
$\left(v_{1}, v_{2}\right)$ is a basis of the plane P
One computes the "dot product":

$$
v_{1} \cdot v_{2}=1 \cdot 2+2 \cdot 1+(2)(-2)=0
$$

So v_{1} and v_{2} are perpendicular.
One of the two possible rotations ρ through $\pi / 2$ will satisfy:

$$
\rho\left(v_{1}\right)=v_{2} \text { and } \rho\left(v_{2}\right)=-v_{1}
$$

The "cross product" $v_{1} \times v_{2}$ lies on the axis of rotation:

$$
\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right) \times\left(\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right)=\left(\begin{array}{r}
-6 \\
6 \\
-3
\end{array}\right)=-3\left(\begin{array}{r}
2 \\
-2 \\
1
\end{array}\right)
$$

Take $v_{3}=\left(\begin{array}{r}2 \\ -2 \\ 1\end{array}\right)$, a vector on the axis, as a third basis vector for \mathbf{R}^{3}.

$$
\rho\left(v_{3}\right)=v_{3}
$$

With $\mathbf{v}=\left(v_{1} v_{2} v_{3}\right)=\mathbf{w}$ as selected pairs of bases, the matrix of ρ is:

$$
\left(\begin{array}{rrr}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

4 Standard Matrix for the $\pi / 2$ Rotation

- We have:

$$
\begin{gathered}
\mathbf{v}=\left(v_{1} v_{2} v_{3}\right)=\left(\begin{array}{rrr}
1 & 2 & 2 \\
2 & 1 & -2 \\
2 & -2 & 1
\end{array}\right)=Q \\
\rho(\mathbf{v})=\left(\rho\left(v_{1}\right) \rho\left(v_{2}\right) \rho\left(v_{3}\right)\right)=\left(v_{1} v_{2} v_{3}\right)\left(\begin{array}{rrr}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)=\mathbf{v} K
\end{gathered}
$$

- Note: The second 3×3 matrix K is the matrix of the linear map ρ with respect to the basis pair $\mathbf{w}=\mathbf{v}$.

The first 3×3 matrix Q is not the matrix of a linear map but, rather, a matrix whose columns are the standard coordinates - coordinates with respect to the standard basis - of the members of the basis \mathbf{v}.

The matrix corresponding in a similar way to the standard basis $\mathbf{e}=\left(e_{1} e_{2} e_{3}\right)$ is the identity matrix, and it would be more precise, instead of writing $\mathbf{v}=Q$ to use Q to relate the row of vectors \mathbf{v} to the row of vectors \mathbf{e} :

$$
\mathbf{v}=\mathbf{e} Q
$$

Q is the matrix for change of basis between the basis \mathbf{v} and the standard basis \mathbf{e}.

- For the standard matrix M of ρ one has $\rho\left(e_{j}\right)=M e_{j}$ or

$$
\rho(\mathbf{e})=\left(\rho\left(e_{1}\right) \rho\left(e_{2}\right) \rho\left(e_{3}\right)\right)=\left(e_{1} e_{2} e_{3}\right) M=\mathbf{e} M
$$

- Since ρ is linear, and $\mathbf{v}=\mathbf{e} Q$, one has

$$
\rho(\mathbf{v})=\rho(\mathbf{e} Q)=\rho(\mathbf{e}) Q
$$

and, therefore, combining the various formulas:

$$
\mathbf{e} Q K=\mathbf{v} K=\rho(\mathbf{v})=\rho(\mathbf{e} Q)=\rho(\mathbf{e}) Q=\mathbf{e} M Q
$$

yielding the following relation among ordinary 3×3 matrices:

$$
Q K=M Q \text { or } M=Q K Q^{-1}
$$

- Because this particular matrix Q consists of mutually perpendicular columns, all of the same length, it is particularly easy to invert:

$$
Q^{-1}=(1 / 9)^{t} Q=(1 / 9) Q=(1 / 9)\left(\begin{array}{rrr}
1 & 2 & 2 \\
2 & 1 & -2 \\
2 & -2 & 1
\end{array}\right)
$$

-

$$
M=\frac{1}{9}\left(\begin{array}{rrr}
4 & -1 & 8 \\
-7 & 4 & 4 \\
-4 & -8 & 1
\end{array}\right)
$$

- M is the standard matrix of one of the two rotations through the angle $\pi / 2$ about the line through the origin and the point $(2,-2,1)$.

