Math 220 Class Slides

http://math.albany.edu/pers/hammond/course/mat220/
Course Assignments Slides
March 11, 2008

1 Reminder

Midterm Test

next Tuesday

March 18

2 March 6: Exercise No. 1

- Task: If possible, invert the 4×4 matrix

$$
M=\left(\begin{array}{rrrr}
1 & 2 & 1 & 2 \\
-2 & -1 & 3 & 2 \\
-2 & 2 & 6 & -1 \\
1 & 0 & -2 & 0
\end{array}\right)
$$

- Form the 4×8 matrix

$$
\left(\begin{array}{ll}
M & 1_{4}
\end{array}\right)
$$

that augments M with the 4×4 identity matrix 1_{4}, and use row operations to maneuver the first 4 columns of that into reduced row echelon form.

- In this case the RREF of the first 4 columns is 1_{4} so the last 4 columns of the reduced matrix form the inverse of M, which is:

$$
M^{-1}=\left(\begin{array}{rrrr}
2 & -4 & -4 & -17 \\
-1 & 7 / 3 & 8 / 3 & 11 \\
1 & -2 & -2 & -9 \\
0 & 2 / 3 & 1 / 3 & 2
\end{array}\right) .
$$

3 March 6: Exercise No. 2(b)

- Task: For the following 4×4 matrix M find
(a) the rank of the matrix
(b) a non-redundant set of linear equations in 4 variables that characterizes the linear relations among the rows of the matrix.
- Note: As explained in the previous class, this is essentially the same problem as that of finding linear equations for the image of the linear map

$$
f_{M}(x)=M x
$$

- The matrix:

$$
\left(\begin{array}{rrrr}
1 & 2 & -4 & 7 \\
-2 & -1 & -1 & -8 \\
5 & 7 & -11 & 29 \\
-3 & -6 & 12 & -21
\end{array}\right)
$$

- The RREF of its transpose:

$$
\left(\begin{array}{rrrr}
1 & 0 & 3 & -3 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

- The rank of M is 2 .
- A non-redundant characterizing set of row relations:

$$
\left\{\begin{aligned}
-3 y_{1}+y_{2}+y_{3} & =0 \\
3 y_{1}+y_{4} & =0
\end{aligned}\right.
$$

4 Matrix of a Linear Map for a Pair of Bases

The transport diagram:

The linear map f between Euclidean spaces has a matrix M

$$
f(x)=f_{M}(x)=M x
$$

Definition. M is called the matrix of ϕ for the pair of bases

$$
\mathbf{v}=\left(v_{1} v_{2} \ldots v_{n}\right) \text { and } \mathbf{w}=\left(w_{1} w_{2} \ldots w_{m}\right)
$$

5 Linear Maps with Prescribed Values

Corollary. Given vector spaces V and W, given bases \mathbf{v} in V and \mathbf{w} in W, and given a matrix M of size $\operatorname{dim}(W) \times \operatorname{dim}(V)$, there is a unique linear map

$$
V \xrightarrow{\phi} W
$$

for which M is the matrix with respect to the given pair of bases.
Proof. Construct ϕ using the transport diagram:

Formula:

$$
\phi=\alpha_{\mathbf{w}} \circ f_{M} \circ \alpha_{\mathbf{v}}^{-1}
$$

6 Matrix of $\pi / 2$ rotation in \mathbf{R}^{2}

- Question. What is the matrix for the rotation counterclockwise ρ by the angle with measure $\pi / 2$ (radians)?
- Note. A rotation of \mathbf{R}^{2} about the origin is a linear map because, as a rigid motion of the plane, it carries parallelograms to parallelograms, and addition of points in \mathbf{R}^{2} follows the "parallelogram law".

- Observations.

$$
\rho(1,0)=(0,1) \text { and } \rho(0,1)=(-1,0)
$$

- If J is the matrix of ρ, then

$$
\begin{gathered}
J_{1}=(0,1) \text { and } J_{2}=(-1,0) \\
J=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
\end{gathered}
$$

- J is the matrix of ρ with respect to the basis pair

$$
\mathbf{v}=\mathbf{w}=\left\{\binom{1}{0},\binom{0}{1}\right\}
$$

7 Matrix for a $\pi / 2$ Rotation in \mathbf{R}^{3}

- Question. If P is the plane in \mathbf{R}^{3} that is the linear span of the vectors

$$
v_{1}=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right), \quad v_{2}=\left(\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right)
$$

and ρ is the rotation in space through $\pi / 2$ about the axis through the origin that is perpendicular to P, specify a basis $\mathbf{v}=\left(v_{1} v_{2} v_{3}\right)$ of \mathbf{R}^{3} relative to which the matrix of ρ is relatively simple.

- Answer. There is slight ambiguity since it is not possible to distinguish between clockwise and counterclockwise.
$\left(v_{1}, v_{2}\right)$ is a basis of the plane P
One computes the "dot product":

$$
v_{1} \cdot v_{2}=1 \cdot 2+2 \cdot 1+(2)(-2)=0
$$

So v_{1} and v_{2} are perpendicular.
One of the two possible rotations ρ through $\pi / 2$ will satisfy:

$$
\rho\left(v_{1}\right)=v_{2} \text { and } \rho\left(v_{2}\right)=-v_{1}
$$

The "cross product" $v_{1} \times v_{2}$ lies on the axis of rotation:

$$
\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right) \times\left(\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right)=\left(\begin{array}{r}
-6 \\
6 \\
-3
\end{array}\right)=-3\left(\begin{array}{r}
2 \\
-2 \\
1
\end{array}\right)
$$

Take $v_{3}=\left(\begin{array}{r}2 \\ -2 \\ 1\end{array}\right)$, a vector on the axis, as a third basis vector for \mathbf{R}^{3}.

$$
\rho\left(v_{3}\right)=v_{3}
$$

With $\mathbf{v}=\left(v_{1} v_{2} v_{3}\right)=\mathbf{w}$ as selected pairs of bases, the matrix of ρ is:

$$
\left(\begin{array}{rrr}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

8 Standard Matrix for the $\pi / 2$ Rotation

- We have:

$$
\begin{gathered}
\mathbf{v}=\left(v_{1} v_{2} v_{3}\right)=\left(\begin{array}{rrr}
1 & 2 & 2 \\
2 & 1 & -2 \\
2 & -2 & 1
\end{array}\right)=Q \\
\rho(\mathbf{v})=\left(\rho\left(v_{1}\right) \rho\left(v_{2}\right) \rho\left(v_{3}\right)\right)=\left(v_{1} v_{2} v_{3}\right)\left(\begin{array}{rrr}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)=\mathbf{v} K
\end{gathered}
$$

- Note: The second 3×3 matrix K is the matrix of the linear map ρ with respect to the basis pair $\mathbf{w}=\mathbf{v}$.
The first 3×3 matrix Q is not the matrix of a linear map but, rather, a matrix whose columns are the standard coordinates - coordinates with respect to the standard basis - of the members of the basis \mathbf{v}.

The matrix corresponding in a similar way to the standard basis $\mathbf{e}=\left(e_{1} e_{2} e_{3}\right)$ is the identity matrix, and it would be more precise, instead of writing $\mathbf{v}=Q$ to use Q to relate the row of vectors \mathbf{v} to the row of vectors \mathbf{e} :

$$
\mathbf{v}=\mathbf{e} Q .
$$

Q is the matrix for change of basis between the basis \mathbf{v} and the standard basis \mathbf{e}.

- For the standard matrix M of ρ one has $\rho\left(e_{j}\right)=M e_{j}$ or

$$
\rho(\mathbf{e})=\left(\rho\left(e_{1}\right) \rho\left(e_{2}\right) \rho\left(e_{3}\right)\right)=\left(e_{1} e_{2} e_{3}\right) M=\mathbf{e} M .
$$

- Since ρ is linear, and $\mathbf{v}=\mathbf{e} Q$, one has

$$
\rho(\mathbf{v})=\rho(\mathbf{e} Q)=\rho(\mathbf{e}) Q,
$$

and, therefore, combining the various formulas:

$$
\mathbf{e} Q K=\mathbf{v} K=\rho(\mathbf{v})=\rho(\mathbf{e} Q)=\rho(\mathbf{e}) Q=\mathbf{e} M Q
$$

yielding the following relation among ordinary 3×3 matrices:

$$
Q K=M Q \text { or } M=Q K Q^{-1}
$$

- Because this particular matrix Q consists of mutually perpendicular columns, all of the same length, it is particularly easy to invert:

$$
Q^{-1}=(1 / 9)^{t} Q=(1 / 9) Q=(1 / 9)\left(\begin{array}{rrr}
1 & 2 & 2 \\
2 & 1 & -2 \\
2 & -2 & 1
\end{array}\right) .
$$

\bullet

$$
M=\frac{1}{9}\left(\begin{array}{rrr}
4 & -1 & 8 \\
-7 & 4 & 4 \\
-4 & -8 & 1
\end{array}\right)
$$

- M is the standard matrix of one of the two rotations through the angle $\pi / 2$ about the line through the origin and the point $(2,-2,1)$.

9 March 11: Exercise No. 1

Let g be the linear map from \mathbf{R}^{4} to \mathbf{R}^{4} that is defined by $g(x)=B x$ where B is the matrix

$$
\left(\begin{array}{rrrr}
1 & 2 & -4 & 3 \\
-2 & -1 & -1 & 5 \\
1 & 3 & 2 & -1 \\
1 & 1 & -1 & -1
\end{array}\right)
$$

Find a 4×4 matrix C for which the linear map h given by multiplication by C has the property that both $h(g(x))=x$ and $g(h(y))=y$ for all x and all y in \mathbf{R}^{4}.

- h is the inverse map to g. It is the linear map given by the inverse matrix.
- The inverse matrix:

$$
\left(\begin{array}{rrrr}
8 / 3 & -29 / 9 & -2 / 9 & -71 / 9 \\
-1 & 4 / 3 & 1 / 3 & 10 / 3 \\
2 / 3 & -8 / 9 & 1 / 9 & -23 / 9 \\
1 & -1 & 0 & -3
\end{array}\right)
$$

10 March 11: Exercise No. 2

Let f be a linear map from \mathbf{R}^{3} to \mathbf{R}^{3} for which

1. $f(1,0,0)=(1,2,3)$.
2. $f(0,1 / 2,0)=(3,2,1)$.
3. $f(-1,0,2)=(4,-6,2)$.

Find all possible 3×3 matrices A for which the formula $f(x)=A x$ is valid for all x in \mathbf{R}^{3}.
Hint: Use the rules for abstract linearity to work out what happens under f to $(0,1,0)$ and $(0,0,1)$.

- f is determined by its values on the members of a basis.
- $\{(1,0,0),(0,1 / 2,0),(-1,0,2)\}$ is a set of 3 linearly independent vectors in \mathbf{R}^{3}, hence, a basis of \mathbf{R}^{3}.
- The columns of A are the values of f on the standard basis.
- $f(0,1,0)=2 f(0,1 / 2,0)=(6,4,2)$.
- $(0,0,1)=(1 / 2)((-1,0,2)+(1,0,0))$.
- $f(0,0,1)=(1 / 2)((4,-6,2)+(1,2,3))=(5 / 2,-2,5 / 2)$.
- The unique matrix A is

$$
\left(\begin{array}{rrr}
1 & 6 & 5 / 2 \\
2 & 4 & -2 \\
3 & 2 & 5 / 2
\end{array}\right)
$$

11 March 11: Exercise No. 3

For a given real number θ find a 2×2 matrix R_{θ} for which the linear function ρ defined by $\rho(x)=R_{\theta} x$ is the counterclockwise rotation of the plane through the angle of (radian) measure θ.

Hint: First work out the four special cases where θ takes the values $0, \pi / 2, \pi$, and $3 \pi / 2$.
-

$$
R_{\theta}=\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

12 March 11: Exercise No. 4

Find a 3×3 matrix S for which the linear function σ given by $\sigma(x)=S x$ is the reflection of \mathbf{R}^{3} in the $x z$ plane (where the $2^{\text {nd }}$ coordinate $y=0$).

- Points in the $x z$ plane do not move.
- Points on the y-axis are "flipped", i.e., $(0, y, 0) \mapsto(0,-y, 0)$.
-

$$
S=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

