Math 220 Class Slides

http://math.albany.edu/pers/hammond/course/mat220/ Course Assignments Slides

March 11, 2008

1 Reminder

Midterm Test

next Tuesday

March 18

2 March 6: Exercise No. 1

• Task: If possible, invert the 4×4 matrix

$$M = \begin{pmatrix} 1 & 2 & 1 & 2 \\ -2 & -1 & 3 & 2 \\ -2 & 2 & 6 & -1 \\ 1 & 0 & -2 & 0 \end{pmatrix}$$

• Form the 4×8 matrix

 $\begin{pmatrix} M & 1_4 \end{pmatrix}$

that augments M with the 4×4 identity matrix 1_4 , and use row operations to maneuver the first 4 columns of that into reduced row echelon form.

• In this case the RREF of the first 4 columns is 1_4 so the last 4 columns of the reduced matrix form the inverse of M, which is:

$$M^{-1} = \begin{pmatrix} 2 & -4 & -4 & -17 \\ -1 & 7/3 & 8/3 & 11 \\ 1 & -2 & -2 & -9 \\ 0 & 2/3 & 1/3 & 2 \end{pmatrix}$$

3 March 6: Exercise No. 2(b)

- Task: For the following 4×4 matrix M find
 - (a) the rank of the matrix

(b) a non-redundant set of linear equations in 4 variables that characterizes the linear relations among the rows of the matrix.

• Note: As explained in the previous class, this is essentially the same problem as that of finding linear equations for the image of the linear map

$$f_M(x) = Mx \quad .$$

• The matrix:

• The RREF of its **transpose**:

$$\left(\begin{array}{rrrrr} 1 & 0 & 3 & -3 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

- The rank of M is 2.
- A non-redundant characterizing set of row relations:

$$\begin{cases} -3y_1 + y_2 + y_3 &= 0\\ 3y_1 + y_4 &= 0 \end{cases}$$

4 Matrix of a Linear Map for a Pair of Bases

The transport diagram:

$$\begin{array}{cccc} V & \stackrel{\phi}{\longrightarrow} & W \\ \alpha_{\mathbf{v}} \uparrow & & \uparrow \alpha_{\mathbf{w}} \\ \mathbf{R}^n & \stackrel{\longrightarrow}{\longrightarrow} & \mathbf{R}^m \end{array}$$

The linear map f between Euclidean spaces has a matrix M

$$f(x) = f_M(x) = Mx$$

Definition. *M* is called the *matrix of* ϕ *for the pair of bases*

 $\mathbf{v} = (v_1 v_2 \dots v_n)$ and $\mathbf{w} = (w_1 w_2 \dots w_m)$.

5 Linear Maps with Prescribed Values

Corollary. Given vector spaces V and W, given bases v in V and w in W, and given a matrix M of size $\dim(W) \times \dim(V)$, there is a unique linear map

$$V \stackrel{\phi}{\longrightarrow} W$$

for which M is the matrix with respect to the given pair of bases.

Proof. Construct ϕ using the transport diagram:

$$\begin{array}{cccc} V & \stackrel{\phi}{\longrightarrow} & W \\ \alpha_{\mathbf{v}} \uparrow & & \uparrow \alpha_{\mathbf{w}} \\ \mathbf{R}^n & \stackrel{\phi}{\longrightarrow} & \mathbf{R}^m \end{array}$$

Formula:

$$\phi = \alpha_{\mathbf{w}} \circ f_M \circ \alpha_{\mathbf{v}}^{-1}$$

6 Matrix of $\pi/2$ rotation in \mathbb{R}^2

- Question. What is the matrix for the rotation counterclockwise ρ by the angle with measure $\pi/2$ (radians)?
- Note. A rotation of \mathbf{R}^2 about the origin is a linear map because, as a rigid motion of the plane, it carries parallelograms to parallelograms, and addition of points in \mathbf{R}^2 follows the "parallelogram law".
- Observations.

$$\rho(1,0) = (0,1)$$
 and $\rho(0,1) = (-1,0)$

• If J is the matrix of ρ , then

$$J_1 = (0,1)$$
 and $J_2 = (-1,0)$

•

$$J = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$$

• J is the matrix of ρ with respect to the basis pair

$$\mathbf{v} = \mathbf{w} = \left\{ \left(\begin{array}{c} 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \right\} \quad .$$

7 Matrix for a $\pi/2$ Rotation in \mathbb{R}^3

• Question. If P is the plane in \mathbf{R}^3 that is the linear span of the vectors

$$v_1 = \begin{pmatrix} 1\\2\\2 \end{pmatrix}, v_2 = \begin{pmatrix} 2\\1\\-2 \end{pmatrix},$$

and ρ is the rotation in space through $\pi/2$ about the axis through the origin that is perpendicular to P, specify a basis $\mathbf{v} = (v_1 v_2 v_3)$ of \mathbf{R}^3 relative to which the matrix of ρ is relatively simple.

• **Answer.** There is slight ambiguity since it is not possible to distinguish between clockwise and counterclockwise.

 (v_1, v_2) is a basis of the plane P

One computes the "dot product":

$$v_1 \cdot v_2 = 1 \cdot 2 + 2 \cdot 1 + (2)(-2) = 0$$

So v_1 and v_2 are perpendicular.

One of the two possible rotations ρ through $\pi/2$ will satisfy:

$$\rho(v_1) = v_2 \text{ and } \rho(v_2) = -v_1$$

The "cross product" $v_1 \times v_2$ lies on the axis of rotation:

$$\begin{pmatrix} 1\\2\\2 \end{pmatrix} \times \begin{pmatrix} 2\\1\\-2 \end{pmatrix} = \begin{pmatrix} -6\\6\\-3 \end{pmatrix} = -3 \begin{pmatrix} 2\\-2\\1 \end{pmatrix}$$

Take $v_3 = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$, a vector on the axis, as a third basis vector for \mathbf{R}^3 .

$$\rho(v_3) = v_3$$

With $\mathbf{v} = (v_1 v_2 v_3) = \mathbf{w}$ as selected pairs of bases, the matrix of ρ is:

(0	-1	0	
	1	0	0	
ĺ	0	0	1)

8 Standard Matrix for the $\pi/2$ Rotation

• We have:

$$\mathbf{v} = (v_1 v_2 v_3) = \begin{pmatrix} 1 & 2 & 2\\ 2 & 1 & -2\\ 2 & -2 & 1 \end{pmatrix} = Q$$
$$\rho(\mathbf{v}) = (\rho(v_1)\rho(v_2)\rho(v_3)) = (v_1 v_2 v_3) \begin{pmatrix} 0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{pmatrix} = \mathbf{v} K$$

• Note: The second 3×3 matrix K is the matrix of the linear map ρ with respect to the basis pair $\mathbf{w} = \mathbf{v}$.

The first 3×3 matrix Q is not the matrix of a linear map but, rather, a matrix whose columns are the standard coordinates — coordinates with respect to the standard basis — of the members of the basis **v**.

The matrix corresponding in a similar way to the standard basis $\mathbf{e} = (e_1e_2e_3)$ is the identity matrix, and it would be more precise, instead of writing $\mathbf{v} = Q$ to use Q to relate the row of vectors \mathbf{v} to the row of vectors \mathbf{e} :

$$\mathbf{v} = \mathbf{e}Q$$

Q is the matrix for change of basis between the basis \mathbf{v} and the standard basis \mathbf{e} .

• For the standard matrix M of ρ one has $\rho(e_j) = Me_j$ or

$$\rho(\mathbf{e}) = (\rho(e_1)\rho(e_2)\rho(e_3)) = (e_1e_2e_3)M = \mathbf{e}M$$

• Since ρ is linear, and $\mathbf{v} = \mathbf{e}Q$, one has

$$\rho(\mathbf{v}) = \rho(\mathbf{e}Q) = \rho(\mathbf{e})Q,$$

and, therefore, combining the various formulas:

$$\mathbf{e}QK = \mathbf{v}K = \rho(\mathbf{v}) = \rho(\mathbf{e}Q) = \rho(\mathbf{e})Q = \mathbf{e}MQ$$

yielding the following relation among ordinary 3×3 matrices:

$$QK = MQ$$
 or $M = QKQ^{-1}$

• Because this particular matrix Q consists of mutually perpendicular columns, all of the same length, it is particularly easy to invert:

$$Q^{-1} = (1/9)^{t}Q = (1/9)Q = (1/9)\begin{pmatrix} 1 & 2 & 2\\ 2 & 1 & -2\\ 2 & -2 & 1 \end{pmatrix}$$

$$M = \frac{1}{9} \left(\begin{array}{rrr} 4 & -1 & 8 \\ -7 & 4 & 4 \\ -4 & -8 & 1 \end{array} \right)$$

• *M* is the standard matrix of one of the two rotations through the angle $\pi/2$ about the line through the origin and the point (2, -2, 1).

9 March 11: Exercise No. 1

Let g be the linear map from \mathbf{R}^4 to \mathbf{R}^4 that is defined by g(x) = Bx where B is the matrix

(1	2	-4	3	
	-2	-1	-1	5	
	1	3	2	-1	
	1	1	-1	-1	

Find a 4×4 matrix C for which the linear map h given by multiplication by C has the property that both h(g(x)) = x and g(h(y)) = y for all x and all y in \mathbb{R}^4 .

- h is the inverse map to g. It is the linear map given by the inverse matrix.
- The inverse matrix:

10 March 11: Exercise No. 2

Let f be a linear map from \mathbf{R}^3 to \mathbf{R}^3 for which

- 1. f(1,0,0) = (1,2,3).
- 2. f(0, 1/2, 0) = (3, 2, 1).
- 3. f(-1, 0, 2) = (4, -6, 2).

Find all possible 3×3 matrices A for which the formula f(x) = Ax is valid for all x in \mathbb{R}^3 .

Hint: Use the rules for abstract linearity to work out what happens under f to (0, 1, 0) and (0, 0, 1).

- f is determined by its values on the members of a basis.
- $\{(1,0,0), (0,1/2,0), (-1,0,2)\}$ is a set of 3 linearly independent vectors in \mathbb{R}^3 , hence, a basis of \mathbb{R}^3 .
- The columns of A are the values of f on the standard basis.
- f(0,1,0) = 2f(0,1/2,0) = (6,4,2).
- (0,0,1) = (1/2)((-1,0,2) + (1,0,0)).
- f(0,0,1) = (1/2)((4,-6,2) + (1,2,3)) = (5/2,-2,5/2).
- The unique matrix A is

11 March 11: Exercise No. 3

For a given real number θ find a 2 × 2 matrix R_{θ} for which the linear function ρ defined by $\rho(x) = R_{\theta}x$ is the counterclockwise rotation of the plane through the angle of (radian) measure θ .

Hint: First work out the four special cases where θ takes the values 0, $\pi/2$, π , and $3\pi/2$.

$$R_{\theta} = \left(\begin{array}{cc} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{array}\right)$$

12 March 11: Exercise No. 4

•

•

Find a 3×3 matrix S for which the linear function σ given by $\sigma(x) = Sx$ is the reflection of \mathbf{R}^3 in the xz plane (where the 2nd coordinate y = 0).

- Points in the *xz* plane do not move.
- Points on the y-axis are "flipped", i.e., $(0, y, 0) \mapsto (0, -y, 0)$.

$$S = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array} \right)$$