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1 Parametric Representations, Coordinates, and Bases

Recall:

• To give a parametric representation of a linear subspace in a vector space is to represent
a general member of the subspace as a linear combination of the vectors in some basis of
the subspace.

• The coefficients of the basis in such a representation are “coordinates” in the linear sub-
space relative to the basis.

• To have coordinates for the points of a linear subspace of dimension k is to have a linear
way of matching points in the subspace with points in Rk.

• To have coordinates for the points of a linear subspace of dimension k is to have an
isomorphism from Rk to the subspace.

2 Isomorphisms

Definition. Let V,W be vector spaces. An isomorphism from V to W is a linear map
V

φ−→ W that establishes a one-to-one correspondence of elements of V with elements of
W .

Proposition. If there is an isomorphism from V to W , then there is an “inverse” iso-
morphism from W to V .

Proof. The inverse of φ is an isomorphism from W to V .

Definition. V and W are isomorphic vector spaces if there is an isomorphism from one
to the other.

If U is isomorphic with V and V is isomorphic with W , then U is isomorphic with W .

Proof. Compose an isomorphism from U to V with an isomorphism from V to W .

3 Isomorphisms and Dimension

Theorem. If V and W are isomorphic vector spaces, then dimV = dimW .

Proof. It is an exercise to show that if v1, v2, . . . , vn is a basis of V , then φ(v1), φ(v2), . . . , φ(vn)
is a basis of W .

Theorem. Any vector space of dimension n is isomorphic to Rn.



Proof. If v = v1, v2, . . . , vn is a basis of V , then the linear map

Rn αv−→ V

that is defined by

αv(x) = (v1v2 . . . vn)


x1

x2

...
xn

 = x1v1 + x2v2 + . . . xnvn

is an isomorphism from Rn to V .

4 Coordinates with respect to a Basis

• Note: When v1, . . . , vr are linearly independent, the coefficients for a given linear com-
bination of them are unique:

x1v1 + . . . + xrvr = y1v1 + . . . + yrvr if and only if x1 = y1, . . . , xr = yr .

• Definition. If v1, . . . , vn form a basis of V , then x1, . . . , xn are called the coordinates of
v with respect to v1, . . . , vr when

v = x1v1 + . . . + xnvn .

• Example: 2, −1, and 3 are the coordinates of the point (2,−1, 3) with respect to the
standard basis of R3.

• Example: 2, −1, and 3 are the coordinates of the polynomial 3t2 − t+ 2 with respect to
the basis {1, t, t2} of the 3-dimensional vector space P2 consisting of all polynomials with
degree at most 2 in the variable t.

• The order in which the members of a basis are listed affects the ordering of coordinates
taken with respect to that basis.

5 Linearity in the Euclidean Case

Recall:

Theorem. For any linear map Rn φ−→ Rm between Euclidean spaces there is a unique
m× n matrix M such that φ = fM .

Re-stated: Every linear map from Rn to Rm is given in the usual way by some matrix.

6 The Fundamental Theorem on Linear Maps

Theorem. If V
φ−→ W is a linear map between vector spaces with V finite-dimensional,

then
dim(V ) = dim(Kernelφ) + dim(Imageφ)

Proof when both V and W are finite-dimensional:
Let

n = dimV and m = dimW .

Let
v = (v1v2 . . . vn) and w = (w1w2 . . . wm)
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be bases of V and W .

Use αv and αw to “transport” φ to

Rn f−→ Rm .

The transport of φ is the linear map f in this diagram:

V
φ−→ W

αv ↑ ↑ αw

Rn −→
f

Rm
.

f is defined by
f = α−1

w ◦ φ ◦ αv .

Since αv and αw are isomorphisms, one has

dimKer(φ) = dimKer(f) and dimIm(φ) = dimIm(f) .

So the theorem is proved by “transport” to the Euclidean case.

7 Matrix of a Linear Map for a Pair of Bases

The transport diagram:
V

φ−→ W
αv ↑ ↑ αw

Rn −→
f

Rm

The linear map f between Euclidean spaces has a matrix M

f(x) = fM (x) = Mx

Definition. M is called the matrix of φ for the pair of bases

v = (v1v2 . . . vn) and w = (w1w2 . . . wm) .

8 Exercise No. 1

• Task: If possible, invert the 4× 4 matrix

M =


1 2 1 2

− 2 −1 3 2
− 2 2 6 −1

1 0 −2 0


• Form the 4× 8 matrix (

M 14

)
that augments M with the 4× 4 identity matrix 14, and use row operations to maneuver
the first 4 columns of that into reduced row echelon form.
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• In this case the RREF of the first 4 columns is 14 so the last 4 columns of the reduced
matrix form the inverse of M , which is:

M−1 =


2 −4 −4 −17
− 1 7/3 8/3 11

1 −2 −2 −9
0 2/3 1/3 2

 .

9 Exercise No. 2(b)

• Task: For the following 4× 4 matrix M find

(a) the rank of the matrix
(b) a non-redundant set of linear equations in 4 variables that characterizes the linear
relations among the rows of the matrix.

• Note: As explained in the previous class, this is essentially the same problem as that of
finding linear equations for the image of the linear map

fM (x) = Mx .

• The matrix: 
1 2 −4 7

− 2 −1 −1 −8
5 7 −11 29

− 3 −6 12 −21


• The RREF of its transpose: 

1 0 3 −3
0 1 −1 0
0 0 0 0
0 0 0 0


• The rank of M is 2.

• A non-redundant characterizing set of row relations:{
−3y1 + y2 + y3 = 0

3y1 + y4 = 0
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