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1 Effect of Row Operations on a Matrix: I

Row Space Unchanged

Proposition. For a given matrix each of the three kinds of elementary
row operations leaves the row space of the matrix unchanged.

2 Effect of Row Operations on a Matrix: II

Linear Relations Among Columns Unchanged

Proposition. For a given matrix each of the three kinds of elementary
row operations leaves the set of linear relations among the columns
unchanged.

3 Linearly Independent Vectors

Let V be any vector space.
Definition. A sequence v1, v2, . . . , vr of elements of V is linearly inde-
pendent if no non-trivial linear combination of v1, v2, . . . , vr vanishes.

Re-stated:

v1, v2, . . . , vr are linearly independent if and only if the only solution of

c1v1 + c2v2 + . . . crvr = ~0

is given by
c1 = c2 = . . . = cr = 0

Definition. A sequence v1, v2, . . . , vr of elements of V is linearly de-
pendent if it is not linearly independent.



4 Finite Dimensional Vector Spaces

Definition. A vector space V is finite-dimensional (or finitely spanned
or finitely generated) if there is a finite sequence of elements v1, v2, . . . , vr
in V such that V is the linear span of v1, v2, . . . , vr.

This means that each v in V is a linear combination of v1, v2, . . . , vr.

Example. Rn is finite-dimensional since it is spanned by
1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
0
...
1

 .

5 A Fundamental Inequality

Proposition. In any finite-dimensional vector space the number of elements in any
linearly independent sequence is at most equal to the number of elements in a given
spanning set.

Proof. Let the vector space be spanned by w1, . . . , wm, and let v1, . . . vn be a linearly
independent sequence. The task is to show n ≤ m.

Since w1, . . . , wm is a spanning set, one has

vj = a1jw1 + a2jw2 + . . . + amjwm

for each j, 1 ≤ j ≤ n. One may express this very concisely by writing

v = wA

where v is the 1× n row (v1v2 . . . vn) of elements of V , w is the 1×m row (w1w2 . . . wm)
of elements of V , and A is the m× n matrix A = (aij).

If n > m, then the reduced row echelon form of A can have at most m non-zero rows and,
therefore, at most m pivot columns. So at least one column of A is not a pivot column.
This means that column is a linear combination of the pivot columns to its left. Hence,
if x is the column of n coefficients of the ensuing linear relation Ax = 0 with x 6= 0, then
one has

vx = (wA)x = w(Ax) = w 0 = 0 ,

which means that v1, . . . vn cannot be linearly independent, a contradiction made possible
by assuming n > m. Hence n ≤ m.
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6 Basis of a Vector Space

Definition. A basis of a vector space V is any maximal linearly independent subset of
the vector space.

Here the word maximal indicates a linearly independent set that is not a subset of a
(strictly) larger linearly independent set.

Proposition. A subset of a vector space V is a basis if and only if it is a linearly
independent set and it spans V .

Proof. Certainly a linearly independent spanning set must be a maximal linearly indepen-
dent set. Conversely if S is a maximal linearly independent set, and v is any element of
V , then the set S ∪ {v} cannot be linearly independent by the maximality of S. Hence,
there must be a non-trivial linear relation among the members of a finite subset of S∪{v}.
The element v must be involved with non-zero coefficient in that linear relation since there
can be no such relation among finitely many members of S. That linear relation can be
used to obtain v as a linear combination of finitely many members of S. Therefore v,
which was an arbitary member of V , lies in the span of S.

7 Dimension of a Vector Space

Theorem. In a finite dimensional vector space any two bases have the
same number of elements.

Proof. Apply the fundamental inequality twice.

Definition. The dimension of a finite dimensional vector space is the
number of elements in any basis.

Example. Rn has dimension n.

8 The Case of dim(V ) Spanning Vectors in V

Proposition. If dim(V ) = n, and v1, . . . vn span V , then v1, . . . vn
must be linearly independent, i.e., form a basis of V .

Proof. Since dim(V ) = n, V must have a basis w1, . . . wn with n mem-
bers. Since w1, . . . wn are linearly independent, the fundamental in-
equality guarantees that n is less than or equal to the number of ele-
ments in any spanning set, including a maximal linearly independent
subset, also a spanning set, of v1, . . . vn. Hence, v1, . . . vn must be a
maximal linearly independent subset of itself, i.e., must be a linearly
independent set.
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9 The Case of dim(V ) Independent Vectors in V

Proposition. If dim(V ) = n, and v1, . . . vn form a linearly independent
subset of V , then v1, . . . vn must span V , i.e., form a basis of V .

Proof. Since dim(V ) = n, V must have a basis w1, . . . wn with n mem-
bers. Since w1, . . . wn span V , the fundamental inequality guarantees
that a maximal linearly independent subset of V containing v1, . . . , vn
must have no more than n elements, i.e., v1, . . . , vn must be a basis since
a maximal linearly independent subset of V is, by definition, a basis of
V .

10 Dimension of Row and Column Spaces

Theorem. For any m×n matrix M the dimension of the row space of M is equal to the
dimension of the column space of M .

Proof. The dimension of the column space is the number of columns in a maximal linearly
independent set of columns. Since linear relations among the columns do not change
under row operations, the dimension of the column space is the number of columns in a
maximal linearly independent set of columns for the reduced row echelon form. Hence,
the dimension of the column space is the number of columns in the reduced row echelon
form containing leading 1’s.

On the other hand, the row space of any m×n matrix is the same linear subspace of Rm

as the row space of its reduced row echelon form. It is obvious that a basis of the row
space of a matrix in reduced row echelon form is given by the set of its non-zero rows.

Since for a matrix in reduced row echelon form, the number of non-zero rows is equal to
the number of columns containing leading 1’s, the dimension of the row space of a given
matrix is equal to the dimension of its column space.

11 The Rank of a Matrix

Definition. The rank of an m × n matrix is the number that is both
the dimension of its row space and the dimension of its column space.
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12 Parametric Representations, Coordinates, and Bases

• To give a parametric representation of a linear subspace in a vector
space is to represent a general member of the subspace as a linear
combination of the vectors in some basis of the subspace.

• The coefficients of the basis in such a representation are “coordinates”
in the linear subspace relative to the basis.

• To have coordinates for the points of a linear subspace of dimension k
is to have a linear way of matching points in the subspace with points
in Rk.

• To have coordinates for the points of a linear subspace of dimension k
is to have an isomorphism from Rk to the subspace.

13 Linearity

Recall:

Definition. A map V
φ−→ W from a vector space V is a linear map if

it preserves linear combinations. That is:

For any v1, . . . , vr in V and any scalars x1, . . . , xr one has

φ(x1v1 + . . . xrvr) = x1φ(x1) + . . . + xrφ(vr) .

Example:
M an m× n matrix

Rn fM−→ Rm

fM (x) = Mx

fM


x1

x2

...
xn

 = x1M1+x2M2+. . . xnMn whereMj = jth column ofM

14 Linearity in the Euclidean Case

Theorem. For any linear map Rn φ−→ Rm between Euclidean spaces there is a unique
m× n matrix M such that φ = fM .

Re-stated: Every linear map from Rn to Rm is given in the usual way by some matrix.

Proof. Let

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , . . . , en =


0
0
...
0
1
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— the “standard basis” of Rn.

For any matrix M :

Mej = Mj = jth column of M for 1 ≤ j ≤ n .

For any x in Rn:

x =


x1

x2

...
xn

 = x1e1 + x2e2 + . . . + xnen .

If φ is linear, then

φ(x) = x1φ(e1) + x2φ(e2) + . . . + xnφ(en) .

Given a linear map φ choose M to be the unique matrix with

Mj = φ(ej) for 1 ≤ j ≤ n .

Then for all x in Rn:

φ(x) = x1M1 + . . . + xnMn = Mx = fM (x) .

Therefore,
φ = fM .

15 A Fundamental Theorem

Theorem. If V
φ−→ W is a linear map between vector spaces with V finite-dimensional,

then
dim(V ) = dim(Kernelφ) + dim(Imageφ)

Proof in the Euclidean Case:

Assume V = Rn, W = Rm, and φ = fM where M is an m× n matrix.

Recall that the image of fM is spanned by the columns of M . Thus, the image of fM is
the same subspace of Rm as the column space of M . Hence,

dim(ImagefM ) = r = Rank(M) .

Recall that the kernel of fM is the subspace of Rn consisting of all x in Rn such that
Mx = 0. When the system of linear equations represented by the matrix equation
Mx = 0 is put in reduced row echelon form, one is able to solve for the pivot column
variables in terms of the other variables. Thus, the n− r non-pivot column variables may
be used as parameters for the space of solutions, i.e., for the kernel of fM . The “space
of parameters” has a “standard basis” consisting of n− r value sets for these parameters.
Hence,

dim(KernelfM ) = n− r = dim(V )− dim(ImagefM ) .

Proof for the general case will be given later by reducing it to this special case.
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16 Exercise 1(c)

Which sets of column indices correspond to maximal linearly independent sets of columns
in the following matrix?

M =

 1 2 3
4 5 6
7 8 9


Response:

Since Mx = x1M1 + x2M2 + x3M3, the question of linear relations among the columns
is equivalent to the question of finding solutions of the linear system Mx = 0. Compute
the reduced row echelon form:  1 0 −1

0 1 2
0 0 0


With the reduced row echelon form the non-pivot columns are transparently expressed in
terms of the pivot columns:

M3 = −M1 + 2M2

or
M2 =

1
2

(M1 +M3) .

Conclusion: Any two of the three columns form a maximal linearly independent set.

Note: In this case the three rows are related in the same way. The fact that the row
relations are the same is a special fact in this exercise.

17 Exercise 2(a)

Which sets of row indices correspond to maximal linearly independent sets of rows in the
following matrix?

N =


1 2 −4 7
− 2 −1 −1 −8
− 1 −4 −14 5

5 7 −11 29


Response: The first of two approaches:

Exchange columns and rows. Then follow the method used for exercise 1. The matrix
obtained by exchanging columns and rows in a given matrix is called the transpose of the
given matrix.

The transpose:

tN =


1 −2 −1 5
2 −1 −4 7
− 4 −1 −14 −11

7 −8 5 29


The RREF of the transpose: 

1 0 0 3
0 1 0 −1
0 0 1 0
0 0 0 0


Column relations in the tranpose give row relations in the original:

N4 = 3N1 −N2 .
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Conclusion: A maximal linearly independent set of the rows of N is given by taking any
two of rows 1, 2, and 4 along with row 3.

18 Exercise 2(a) (continued)

Which sets of row indices correspond to maximal linearly independent sets of rows in the
following matrix?

N =


1 2 −4 7
− 2 −1 −1 −8
− 1 −4 −14 5

5 7 −11 29


Response: The second of two approaches:

Linear relations among the rows of N correspond to equations satisfied by points y in the
image of the linear map

R4 fN−→ R4

Form the generic augmented matrix

N =


1 2 −4 7 y1

− 2 −1 −1 −8 y2
− 1 −4 −14 5 y3

5 7 −11 29 y4

 .

Use row operations to maneuver this augmented matrix so that the coefficient matrix
portion is in reduced row echelon form, and then extract the linear relations among the
coordinates of y arising from zero rows in the coefficient portion.

y4 − 3y1 + y2
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