Math 220 Class Slides

http://math.albany.edu/pers/hammond/course/mat220/

February 28, 2008

1 Linear Combinations and Span

Definition. If V is a vector space and $v_{1}, v_{2}, \ldots, v_{r}$ are elements of V (vectors), then a linear combination of $v_{1}, v_{2}, \ldots, v_{r}$ is an element of V having the form $c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{r} v_{r}$ for some scalars $c_{1}, c_{2}, \ldots, c_{r}$.

Proposition. The set of all linear combinations of $v_{1}, v_{2}, \ldots, v_{r}$ is a linear subspace of V.

The proof is obvious.
Definition. The set of all linear combinations of $v_{1}, v_{2}, \ldots, v_{r}$ is called the linear span of $v_{1}, v_{2}, \ldots, v_{r}$ or may also be called the linear subspace of V generated by $v_{1}, v_{2}, \ldots, v_{r}$.

2 The Row and Column Spaces of a Matrix

Suppose M is an $m \times n$ matrix with columns $M_{1}, M_{2}, \ldots M_{n}$ rows $M^{1}, M^{2}, \ldots M^{m}$ (superscripts)

Definition.

The column space of M is the linear span of $M_{1}, M_{2}, \ldots M_{n}$.
The row space of M is the linear span of $M^{1}, M^{2}, \ldots M^{m}$.
Proposition. If $\mathbf{R}^{n} \xrightarrow{f_{M}} \mathbf{R}^{m}$ is the linear map given by $f_{M}(x)=M x$, then the image of f_{M} is the column space of M.
Proof. The nature of matrix multiplication is such that

$$
M x=x_{1} M_{1}+x_{2} M_{2}+\ldots x_{n} M_{n}
$$

3 Effect of Row Operations on a Matrix: I

Row Space Unchanged

Proposition. For a given matrix each of the three kinds of elementary row operations leaves the row space of the matrix unchanged.

Proof. Use case by case checking.

4 Effect of Row Operations on a Matrix: II

Linear Relations Among Columns Unchanged

Proposition. For a given matrix each of the three kinds of elementary row operations leaves the set of linear relations among the columns unchanged.

Proof. A linear relation among the columns of M is a relation, if true, of the form

$$
a_{1} M_{1}+\ldots+a_{n} M_{n}=b_{1} M_{1}+\ldots+b_{n} M_{n}
$$

for scalars $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$. Such a relation holds if and only if

$$
\left(a_{1}-b_{1}\right) M_{1}+\ldots\left(a_{n}-b_{n}\right) M_{n}=\overrightarrow{0}
$$

This holds if and only if the column $a-b$ is a solution of the linear system of equations

$$
M x=\overrightarrow{0}
$$

by application of the relation

$$
M x=x_{1} M_{1}+\ldots+x_{n} M_{n}
$$

to the case $x=a-b$.

5 Linearly Independent Vectors

Let V be any vector space.
Definition. A sequence $v_{1}, v_{2}, \ldots, v_{r}$ of elements of V is linearly independent if no non-trivial linear combination of $v_{1}, v_{2}, \ldots, v_{r}$ vanishes.

Re-stated:

$v_{1}, v_{2}, \ldots, v_{r}$ are linearly independent if and only if the only solution of

$$
c_{1} v_{1}+c_{2} v_{2}+\ldots c_{r} v_{r}=\overrightarrow{0}
$$

is given by

$$
c_{1}=c_{2}=\ldots=c_{r}=0
$$

Definition. A sequence $v_{1}, v_{2}, \ldots, v_{r}$ of elements of V is linearly dependent if it is not linearly independent.

6 Example of Linear Independence

In \mathbf{R}^{n} the unit vectors on the n positive coordinate axes

$$
\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right), \ldots,\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

are linearly independent.

7 Example of Linear Dependence

Example. In \mathbf{R}^{2} the 3 vectors

$$
\binom{1}{0},\binom{0}{1},\binom{2}{-3}
$$

are linearly dependent since

$$
\binom{2}{-3}=2\binom{1}{0}-3\binom{0}{1}
$$

8 Another Example

Proposition. The columns $M_{1}, M_{2}, \ldots M_{n}$ of an $m \times n$ matrix are linearly independent if and only if the only solution of the linear system $M x=0$ is the solution $x=0$.

Re-statement: For an $m \times n$ matrix M the columns $M_{1}, M_{2}, \ldots M_{n}$ are linearly independent if and only if the kernel of the linear map

$$
\mathbf{R}^{n} \xrightarrow{f_{M}} \mathbf{R}^{m}
$$

consists only of the vector 0 .
And again: For an $m \times n$ matrix M the columns $M_{1}, M_{2}, \ldots M_{n}$ are linearly dependent if and only if there is a vector x in \mathbf{R}^{n} such that $x \neq 0$ yet $M x=0$.

9 The Uniqueness of Reduced Row Echelon Form

Proposition. There is only one reduced row echelon form that may be obtained from a given matrix.

Proof. This boils down to the question of whether, for matrices of given size, a matrix in reduced row echelon form is completely characterized by the linear relations among its columns. This is seen to be true as follows:

1. The indices corresponding to pivot columns (columns containing leading 1's in reduced row echelon form) are the indices of the "leftmost" maximal linearly independent subset the of set of columns.
2. In reduced row echelon form each non-pivot column is a linear combination, in a unique way, of the pivot columns to its left.

10 Finite Dimensional Vector Spaces

Definition. A vector space V is finite-dimensional (or finitely spanned or finitely generated) if there is a finite sequence of elements $v_{1}, v_{2}, \ldots, v_{r}$ in V such that V is the linear span of $v_{1}, v_{2}, \ldots, v_{r}$.

This means that each v in V is a linear combination of $v_{1}, v_{2}, \ldots, v_{r}$.
Example. \mathbf{R}^{n} is finite-dimensional since it is spanned by

$$
\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right), \ldots,\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right)
$$

11 Infinite Linearly Independent Sets

Definition. If V is a vector space, a subset S, finite or infinite, of V is linearly independent if each finite sequence of distinct members of S is linearly independent.

Example. Let P be the vector space of all polynomials in the variable t. Then the set

$$
S=\left\{1, t, t^{2}, t^{3}, \ldots, t^{k}, \ldots\right\}
$$

of all powers of t is a linearly independent set. (This may be proved easily using Taylor's Theorem.)

12 Infinite Spanning Sets

Definition. If V is a vector space, a subset S, finite or infinite, of V spans or generates V if each member of V is a linear combination of the members of a finite sequence in S.

Example. Let P be the vector space of all polynomials in the variable t. Then the set

$$
S=\left\{1, t, t^{2}, t^{3}, \ldots, t^{k}, \ldots\right\}
$$

of all powers of t spans P (by the definition of polynomial).

13 A Fundamental Inequality

Proposition. In any finite-dimensional vector space the number of elements in any linearly independent sequence is at most equal to the number of elements in a given spanning set.

Proof. Let the vector space be spanned by w_{1}, \ldots, w_{m}, and let $v_{1}, \ldots v_{n}$ be a linearly independent sequence. The task is to show $n \leq m$.

Since w_{1}, \ldots, w_{m} is a spanning set, one has

$$
v_{j}=a_{1 j} w_{1}+a_{2 j} w_{2}+\ldots+a_{m j} w_{m}
$$

for each $j, 1 \leq j \leq n$. One may express this very concisely by writing

$$
v=w A
$$

where v is the $1 \times n$ row $\left(v_{1} v_{2} \ldots v_{n}\right)$ of elements of V, w is the $1 \times m$ row $\left(w_{1} w_{2} \ldots w_{m}\right)$ of elements of V, and A is the $m \times n$ matrix $A=\left(a_{i j}\right)$.

If $n>m$, then the reduced row echelon form of A can have at most m non-zero rows and, therefore, at most m pivot columns. So at least one column of A is not a pivot column. This means that column is a linear combination of the pivot columns to its left. Hence, if x is the column of n coefficients of the ensuing linear relation $A x=0$ with $x \neq 0$, then one has

$$
v x=(w A) x=w(A x)=w 0=0
$$

which means that $v_{1}, \ldots v_{n}$ cannot be linearly independent, a contradiction made possible by assuming $n>m$. Hence $n \leq m$.

14 Example of an Infinite Dimensional Vector Space

The vector space of all polynomials (of all degrees) in the variable t is not a finite dimensional vector space because it contains the infinite linearly independent set $\left\{1, t, t^{2}, \ldots\right\}$ of all powers of t.

15 Basis of a Vector Space

Definition. A basis of a vector space V is any maximal linearly independent subset of the vector space.

Here the word maximal indicates a linearly independent set that is not a subset of a (strictly) larger linearly independent set.

Proposition. A subset of a vector space V is a basis if and only if it is a linearly independent set and it spans V.

Proof. Certainly a linearly independent spanning set must be a maximal linearly independent set. Conversely if S is a maximal linearly independent set, and v is any element of V, then the set $S \cup\{v\}$ cannot be linearly independent by the maximality of S. Hence, there must be a non-trivial linear relation among the members of a finite subset of $S \cup\{v\}$. The element v must be involved with non-zero coefficient in that linear relation since there can be no such relation among finitely many members of S. That linear relation can be used to obtain v as a linear combination of finitely many members of S. Therefore v, which was an arbitary member of V, lies in the span of S.

16 Examples of Bases

- The n unit vectors on the positive coordinate axes form a basis of \mathbf{R}^{n}.
- The (infinite) set of all powers of t forms a basis of the space of all polynomials in the variable t.

17 Dimension of a Vector Space

Theorem. In a finite dimensional vector space any two bases have the same number of elements.

Proof. Apply the fundamental inequality twice.
Definition. The dimension of a finite dimensional vector space is the number of elements in any basis.

Example. \mathbf{R}^{n} has dimension n.

18 Assignment: Exercise No. 2

Let f be the linear map from \mathbf{R}^{4} to \mathbf{R}^{4} that is given by the matrix

$$
\left(\begin{array}{rrrr}
1 & 2 & -4 & 7 \\
-2 & -1 & -1 & -8 \\
-1 & 4 & -14 & 5 \\
5 & 7 & -11 & 29
\end{array}\right)
$$

a. Obtain a parametric representation for the kernel of f.
b. Find a pair of equations in 4 variables that characterize the image of f.
c. List a pair of equations in 4 variables that characterize the kernel of f.
d. Give a parametric representation for the image of f.

19 RREF of the Generic Augmented Matrix

$$
\begin{gathered}
\left(\begin{array}{rrrrr}
1 & 2 & -4 & 7 & y_{1} \\
-2 & -1 & -1 & -8 & y_{2} \\
-1 & 4 & -14 & 5 & y_{3} \\
5 & 7 & -11 & 29 & y_{4}
\end{array}\right) \\
\left(\begin{array}{rrrrr}
1 & 0 & 2 & 3 & -\left(y_{1}+2 y_{2}\right) / 3 \\
0 & 1 & -3 & 2 & \left(2 y_{1}+y_{2}\right) / 3 \\
0 & 0 & 0 & 0 & y_{3}-3 y_{1}-2 y_{2} \\
0 & 0 & 0 & 0 & y_{4}-3 y_{1}+y_{2}
\end{array}\right)
\end{gathered}
$$

20 Part (a): Parametric Representation of the Kernel

- $y_{1}=y_{2}=y_{3}=y_{4}=0$.
- Columns 1 and 2 are pivot columns.
- Equations may be solved for x_{1} and x_{2} in terms of x_{3} and x_{4}.
- The two non-trivial equations:

$$
\left\{\begin{array}{l}
x_{1}=-2 x_{3}-3 x_{4} \\
x_{2}=3 x_{3}-2 x_{4}
\end{array}\right.
$$

- Let $u=x_{3}$ and $v=x_{4}$:

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=u\left(\begin{array}{r}
-2 \\
3 \\
1 \\
0
\end{array}\right)+v\left(\begin{array}{r}
-3 \\
-2 \\
0 \\
1
\end{array}\right)
$$

21 Part (a): Observations

- The parametric representation:

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=u\left(\begin{array}{r}
-2 \\
3 \\
1 \\
0
\end{array}\right)+v\left(\begin{array}{r}
-3 \\
-2 \\
0 \\
1
\end{array}\right)
$$

- Two parameters u and v.
- The kernel is a plane through 0 in \mathbf{R}^{4}.
- The kernel is a linear subspace of \mathbf{R}^{4}.
- A basis of the kernel.

$$
\left\{\left(\begin{array}{r}
-2 \\
3 \\
1 \\
0
\end{array}\right),\left(\begin{array}{r}
-3 \\
-2 \\
0 \\
1
\end{array}\right)\right\}
$$

- The kernel has dimension 2 .
- The linear map $\mathbf{R}^{2} \xrightarrow{\phi} \mathbf{R}^{4}$

$$
\phi(u, v)=u\left(\begin{array}{r}
-2 \\
3 \\
1 \\
0
\end{array}\right)+v\left(\begin{array}{r}
-3 \\
-2 \\
0 \\
1
\end{array}\right)
$$

is an isomorphism from \mathbf{R}^{2} to the kernel.

- u and v are "coordinates" for points in the kernel relative to this basis.

22 Part (b): Equations for the Image

- Want equations in the y_{j}.
- Look at the rows of the reduced augmented matrix with zeros in the "coefficient" columns.
- Use the corresponding linear equations.
\bullet

$$
\left\{\begin{aligned}
y_{3}-3 y_{1}-2 y_{2} & =0 \\
y_{4}-3 y_{1}+y_{2} & =0
\end{aligned}\right.
$$

23 Part (c): Equations for the Kernel

- Want equations in the x_{i}.
- Look at the rows of the reduced augmented matrix that are non-zero in the "coefficient" columns.
\bullet

$$
\left\{\begin{array}{l}
x_{1}+2 x_{3}+3 x_{4}=0 \\
x_{2}-3 x_{3}+2 x_{4}=0
\end{array}\right.
$$

- This is easier than part(a).

24 Part (d): Parametric Representation for the Image

- A basis for the image is given by the pivot columns in the original matrix.
- The pivot columns are the first and second:

$$
\left\{\left(\begin{array}{r}
1 \\
-2 \\
-1 \\
5
\end{array}\right),\left(\begin{array}{r}
2 \\
-1 \\
4 \\
7
\end{array}\right)\right\}
$$

- Parametric Representation:

$$
\psi(s, t)=s\left(\begin{array}{r}
1 \\
-2 \\
-1 \\
5
\end{array}\right)+t\left(\begin{array}{r}
2 \\
-1 \\
4 \\
7
\end{array}\right)
$$

- Easier than part(b).
- The linear map $\mathbf{R}^{2} \xrightarrow{\psi} \mathbf{R}^{4}$ is an isomorphism from \mathbf{R}^{2} to the image.
- s and t are "coordinates" for points in the image relative to this basis.

25 Parametric Representations, Coordinates, and Bases

- To give a parametric representation of a linear subspace in a vector space is to represent a general member of the subspace as a linear combination of the vectors in some basis of the subspace.
- The coefficients of the basis in such a representation are "coordinates" in the linear subspace relative to the basis.
- To have coordinates for the points of a linear subspace of dimension k is to have a linear way of matching points in the subspace with points in \mathbf{R}^{k}.
- To have coordinates for the points of a linear subspace of dimension k is to have an isomorphism from \mathbf{R}^{k} to the subspace.

