Math 220 Class Slides

http://math.albany.edu/pers/hammond/course/mat220/
February 26, 2008

1 The Last Quiz

Where does the line L through $A=(4,2,-7)$ and $B=(10,5,8)$ meet the plane $x-y+z=7$?

Parametric representation of L :

$$
P=\phi(t)=(1-t) A+t B=(4+6 t, 2+3 t,-7+15 t)
$$

When does $\phi(t)$ satisfy the equation of the plane?

$$
x-y+z=(4+6 t)-(2+3 t)+(-7+15 t)=-5+18 t=7
$$

Solve for t :

$$
\begin{gathered}
t=\frac{2}{3} \\
P=(8,4,3)
\end{gathered}
$$

2 The Last Quiz Again

Where does the line L through $A=(4,2,-7)$ and $B=(10,5,8)$ meet the plane $x-y+z=7$?

What Does Not Help

The matrix

$$
\left(\begin{array}{rrrr}
4 & 2 & -7 & 0 \\
10 & 5 & 8 & 0 \\
1 & -1 & 1 & 7
\end{array}\right)
$$

is the augmented matrix of the linear system

$$
\left\{\begin{aligned}
4 x+2 y-7 z & =0 \\
10 x+5 y+8 z & =0 \\
x-y+z & =7
\end{aligned}\right.
$$

This linear system does not bear on the problem.

3 Exercise No. 1

Let C be the 4×4 matrix

$$
\left(\begin{array}{rrrr}
1 & 2 & 0 & 2 \\
-2 & -1 & 3 & 2 \\
-2 & 2 & 6 & -1 \\
1 & 0 & -2 & 0
\end{array}\right)
$$

and let f be the linear map (or function) from \mathbf{R}^{4} to \mathbf{R}^{4} defined by the formula

$$
y=f(x)=C x
$$

a. Find all solutions of $f(x)=(0,0,0,0)$.
b. Find all solutions of $f(x)=(1,-2,-2,1)$ with $x_{3}=0$.
c. Find all solutions of $f(x)=(1,-2,-2,1)$.
d. Find all solutions of $f(x)=(-1,-7,2,1)$ with $x_{3}=0$.
e. Find all solutions of $f(x)=(-1,-7,2,1)$.
f. What is the kernel of f ?
g. Find equations that characterize the image of f.

4 Exercise No. 1: Augmented Matrix

$$
\left(\begin{array}{rrrrr}
1 & 2 & 0 & 2 & y_{1} \\
-2 & -1 & 3 & 2 & y_{2} \\
-2 & 2 & 6 & -1 & y_{3} \\
1 & 0 & -2 & 0 & y_{4}
\end{array}\right)
$$

Use row operations to bring the first 4 columns into RREF.

$$
\left(\begin{array}{rrrrr}
1 & 0 & -2 & 0 & \left(y_{1}-2 y_{2}-2 y_{3}\right) / 9 \\
0 & 1 & 1 & 0 & \left(2 y_{1}-y_{2}+2 y_{3}\right) / 9 \\
0 & 0 & 0 & 1 & \left(2 y_{1}+2 y_{2}-y_{3}\right) / 9 \\
0 & 0 & 0 & 0 & \left(9 y_{4}-y_{1}+2 y_{2}+2 y_{3}\right) / 9
\end{array}\right)
$$

5 Exercise No. 1: Part (g)

- The image of f is the set of all y for which the fiber of f over y is non-empty, or, equivalently, the set of all y for which the equation $y=f(x)$ has at least one solution x.
- Equations corresponding to the image of a linear map given by a matrix are obtained from rows in the augmented matrix for which the coefficient matrix portion of the row is zero.
- In this case

$$
9 y_{4}-y_{1}+2 y_{2}+2 y_{3}=0
$$

6 Exercise No. 1: Parts (a) \& (f)

- The kernel of f is the set of solutions of $f(x)=0$.
- The equations:

$$
\left\{\begin{aligned}
x_{1}-2 x_{3} & =0 \\
x_{2}+x_{3} & =0 \\
x_{4} & =0 \\
0 & =0
\end{aligned}\right.
$$

- Variables corresponding to pivot columns $-x_{1}, x_{2}$, and $x_{4}-$ may be expressed in terms of the others - x_{3} :

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=t\left(\begin{array}{r}
2 \\
-1 \\
1 \\
0
\end{array}\right)
$$

- The kernel may be described as:

The line in \mathbf{R}^{4} through the origin and the point $(2,-1,1,0)$ OR
The linear subspace of \mathbf{R}^{4} consisting of all scalar multiples of (2, -1, 1, 0)

7 Exercise No. 1: the specific equations

- Solution for $y=(1,-2,-2,1)$:

$$
x=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)+t\left(\begin{array}{r}
2 \\
-1 \\
1 \\
0
\end{array}\right)
$$

$f^{-1}(1,-2,-2,1)$ is the translate of $\operatorname{Ker}(f)$ by the vector $(1,0,0,0)$.

- $(1,0,0,0)$ is the solution for which $x_{3}=0$
- Solution for $y=(-1,-7,2,1)$:

$$
x=\left(\begin{array}{r}
1 \\
1 \\
0 \\
-2
\end{array}\right)+t\left(\begin{array}{r}
2 \\
-1 \\
1 \\
0
\end{array}\right)
$$

$f^{-1}(-1,-7,2,1)$ is the translate of $\operatorname{Ker}(f)$ by the vector $(1,1,0,-2)$.

- $((1,1,0,-2))$ is the solution for which $x_{3}=0$

8 Exercise No. 2

Let G be the 4×4 matrix

$$
\left(\begin{array}{rrrr}
1 & 2 & 0 & 1 \\
-2 & -1 & 1 & 1 \\
-1 & 4 & 2 & 5 \\
5 & 7 & -1 & 2
\end{array}\right),
$$

and let g be the linear map (or function) from \mathbf{R}^{4} to \mathbf{R}^{4} defined by the formula

$$
y=g(x)=G x
$$

Solve each of the following systems of 4 linear equations in 4 unknowns x_{1}, x_{2}, x_{3} and x_{4}.
a. $g(x)=(0,0,0,0)$.
b. $g(x)=(1,-1,1,3)$ with $x_{3}=0$.
c. $g(x)=(1,-1,1,4)$ with $x_{3}=0$.
d. $g(x)=(1,-1,1,4)$ with $x_{3}=x_{4}=0$.
e. $g(x)=(3,-1,2,1)$ with $x_{3}=0$.
f. $g(x)=(3,-1,7,10)$ with $x_{3}=0$.
g. What is the kernel of g ?
h. Find equations that characterize the image of f.

9 Exercise No. 2: the Augmented Matrix

$$
\left(\begin{array}{rrrrr}
1 & 2 & 0 & 1 & y_{1} \\
-2 & -1 & 1 & 1 & y_{2} \\
-1 & 4 & 2 & 5 & y_{3} \\
5 & 7 & -1 & 2 & y_{4}
\end{array}\right)
$$

Use row operations to bring the first 4 columns into RREF.

$$
\left(\begin{array}{rrrrr}
1 & 0 & -2 / 3 & -1 & -\left(y_{1}+2 y_{2}\right) / 3 \\
0 & 1 & 1 / 3 & 1 & \left(2 y_{1}+y_{2}\right) / 3 \\
0 & 0 & 0 & 0 & y_{3}-3 y_{1}-2 y_{2} \\
0 & 0 & 0 & 0 & y_{4}-3 y_{1}+y_{2}
\end{array}\right)
$$

10 Exercise No. 2: Kernel and Image

- Image:

$$
y_{3}=3 y_{1}+2 y_{2} \quad \text { and } \quad y_{4}=3 y_{1}-y_{2}
$$

- Note: Each column of the original matrix G is in the image.
- Kernel given by equations:

$$
x_{1}=(2 / 3) x_{3}+x_{4} \quad x_{2}=-(1 / 3) x_{3}-x_{4}
$$

- Kernel in parametric form (with $u=x_{3}$ and $v=x_{4}$):

$$
x=u\left(\begin{array}{r}
2 / 3 \\
-1 / 3 \\
1 \\
0
\end{array}\right)+v\left(\begin{array}{r}
1 \\
-1 \\
0 \\
1
\end{array}\right)
$$

- Every vector in the kernel is a linear combination of

$$
\left(\begin{array}{r}
2 / 3 \\
-1 / 3 \\
1 \\
0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{r}
1 \\
-1 \\
0 \\
1
\end{array}\right)
$$

11 Linear Combinations and Span

Definition. If V is a vector space and $v_{1}, v_{2}, \ldots, v_{r}$ are elements of V (vectors), then a linear combination of $v_{1}, v_{2}, \ldots, v_{r}$ is an element of V having the form $c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{r} v_{r}$ for some scalars $c_{1}, c_{2}, \ldots, c_{r}$.
Proposition. The set of all linear combinations of $v_{1}, v_{2}, \ldots, v_{r}$ is a linear subspace of V.
The proof is obvious.
Definition. The set of all linear combinations of $v_{1}, v_{2}, \ldots, v_{r}$ is called the linear span of $v_{1}, v_{2}, \ldots, v_{r}$ or may also be called the linear subspace of V generated by $v_{1}, v_{2}, \ldots, v_{r}$.

12 The Row and Column Spaces of a Matrix

Suppose M is an $m \times n$ matrix with columns $M_{1}, M_{2}, \ldots M_{n}$ rows $M^{1}, M^{2}, \ldots M^{m}$ (superscripts)

Definition.

The column space of M is the linear span of $M_{1}, M_{2}, \ldots M_{n}$.
The row space of M is the linear span of $M^{1}, M^{2}, \ldots M^{m}$.
Proposition. If $\mathbf{R}^{n} \xrightarrow{f_{M}} \mathbf{R}^{m}$ is the linear map given by $f_{M}(x)=M x$, then the image of f_{M} is the column space of M.
Proof. The nature of matrix multiplication is such that

$$
M x=x_{1} M_{1}+x_{2} M_{2}+\ldots x_{n} M_{n} .
$$

