Math 220 Class Slides

http://math.albany.edu/pers/hammond/course/mat220/

February 26, 2008

1 The Last Quiz

Where does the line L through A = (4, 2, -7) and B = (10, 5, 8) meet the plane x - y + z = 7?

Parametric representation of L:

 $P = \phi(t) = (1-t)A + tB = (4+6t, 2+3t, -7+15t)$

When does $\phi(t)$ satisfy the equation of the plane?

$$x - y + z = (4 + 6t) - (2 + 3t) + (-7 + 15t) = -5 + 18t = 7$$

Solve for t:

$$t = \frac{2}{3}$$
$$P = (8, 4, 3)$$

2 The Last Quiz Again

Where does the line L through A = (4, 2, -7) and B = (10, 5, 8) meet the plane x - y + z = 7?

What Does Not Help

The matrix

 $\left(\begin{array}{rrrr} 4 & 2 & -7 & 0 \\ 10 & 5 & 8 & 0 \\ 1 & -1 & 1 & 7 \end{array}\right)$

is the augmented matrix of the linear system

$$\begin{cases} 4x + 2y - 7z &= 0\\ 10x + 5y + 8z &= 0\\ x - y + z &= 7 \end{cases}$$

This linear system does not bear on the problem.

3 Exercise No. 1

Let C be the 4×4 matrix

and let f be the linear map (or function) from \mathbf{R}^4 to \mathbf{R}^4 defined by the formula

$$y = f(x) = Cx$$

- a. Find all solutions of f(x) = (0, 0, 0, 0).
- b. Find all solutions of f(x) = (1, -2, -2, 1) with $x_3 = 0$.
- c. Find all solutions of f(x) = (1, -2, -2, 1).
- d. Find all solutions of f(x) = (-1, -7, 2, 1) with $x_3 = 0$.
- e. Find all solutions of f(x) = (-1, -7, 2, 1).
- f. What is the kernel of f?
- g. Find equations that characterize the image of f.

4 Exercise No. 1: Augmented Matrix

Use row operations to bring the first 4 columns into RREF.

$$\left(\begin{array}{cccccc} 1 & 0 & -2 & 0 & (y_1 - 2y_2 - 2y_3)/9 \\ 0 & 1 & 1 & 0 & (2y_1 - y_2 + 2y_3)/9 \\ 0 & 0 & 0 & 1 & (2y_1 + 2y_2 - y_3)/9 \\ 0 & 0 & 0 & 0 & (9y_4 - y_1 + 2y_2 + 2y_3)/9 \end{array} \right)$$

5 Exercise No. 1: Part (g)

- The **image** of f is the set of all y for which the fiber of f over y is non-empty, or, equivalently, the set of all y for which the equation y = f(x) has at least one solution x.
- Equations corresponding to the image of a linear map given by a matrix are obtained from rows in the augmented matrix for which the coefficient matrix portion of the row is zero.
- In this case

$$9y_4 - y_1 + 2y_2 + 2y_3 = 0$$

6 Exercise No. 1: Parts (a) & (f)

- The **kernel** of f is the set of solutions of f(x) = 0.
- The equations:

$$\begin{cases} x_1 - 2x_3 &= 0\\ x_2 + x_3 &= 0\\ x_4 &= 0\\ 0 &= 0 \end{cases}$$

• Variables corresponding to pivot columns — x_1 , x_2 , and x_4 — may be expressed in terms of the others — x_3 :

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = t \begin{pmatrix} 2 \\ -1 \\ 1 \\ 0 \end{pmatrix}$$

• The kernel may be described as:

The line in \mathbf{R}^4 through the origin and the point (2, -1, 1, 0) OR

The linear subspace of \mathbf{R}^4 consisting of all scalar multiples of (2, -1, 1, 0)

7 Exercise No. 1: the specific equations

• Solution for y = (1, -2, -2, 1):

$$x = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} + t \begin{pmatrix} 2\\-1\\1\\0 \end{pmatrix}$$

 $f^{-1}(1, -2, -2, 1)$ is the translate of Ker(f) by the vector (1, 0, 0, 0).

- (1,0,0,0) is the solution for which $x_3 = 0$
- Solution for y = (-1, -7, 2, 1):

$$x = \begin{pmatrix} 1\\ 1\\ 0\\ -2 \end{pmatrix} + t \begin{pmatrix} 2\\ -1\\ 1\\ 0 \end{pmatrix}$$

 $f^{-1}(-1, -7, 2, 1)$ is the translate of Ker(f) by the vector (1, 1, 0, -2).

• ((1,1,0,-2)) is the solution for which $x_3 = 0$

8 Exercise No. 2

Let G be the 4×4 matrix

$$\left(\begin{array}{rrrrr} 1 & 2 & 0 & 1 \\ -2 & -1 & 1 & 1 \\ -1 & 4 & 2 & 5 \\ 5 & 7 & -1 & 2 \end{array}\right) \ ,$$

and let g be the linear map (or function) from \mathbf{R}^4 to \mathbf{R}^4 defined by the formula

$$y = g(x) = Gx$$

Solve each of the following systems of 4 linear equations in 4 unknowns x_1, x_2, x_3 and x_4 .

- a. g(x) = (0, 0, 0, 0).
- b. g(x) = (1, -1, 1, 3) with $x_3 = 0$.
- c. g(x) = (1, -1, 1, 4) with $x_3 = 0$.
- d. g(x) = (1, -1, 1, 4) with $x_3 = x_4 = 0$.
- e. g(x) = (3, -1, 2, 1) with $x_3 = 0$.
- f. g(x) = (3, -1, 7, 10) with $x_3 = 0$.
- g. What is the kernel of g?
- h. Find equations that characterize the image of f.

9 Exercise No. 2: the Augmented Matrix

Use row operations to bring the first 4 columns into RREF.

10 Exercise No. 2: Kernel and Image

• Image:

$$y_3 = 3y_1 + 2y_2$$
 and $y_4 = 3y_1 - y_2$

- Note: Each column of the original matrix G is in the image.
- **Kernel** given by equations:

$$x_1 = (2/3)x_3 + x_4$$
 $x_2 = -(1/3)x_3 - x_4$

• Kernel in parametric form (with $u = x_3$ and $v = x_4$):

$$x = u \begin{pmatrix} 2/3 \\ -1/3 \\ 1 \\ 0 \end{pmatrix} + v \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix}$$

• Every vector in the kernel is a linear combination of

$$\left(\begin{array}{c}2/3\\-1/3\\1\\0\end{array}\right) \quad \text{and} \quad \left(\begin{array}{c}1\\-1\\0\\1\end{array}\right)$$

11 Linear Combinations and Span

Definition. If V is a vector space and v_1, v_2, \ldots, v_r are elements of V (vectors), then a *linear combination of* v_1, v_2, \ldots, v_r is an element of V having the form $c_1v_1 + c_2v_2 + \ldots + c_rv_r$ for some scalars c_1, c_2, \ldots, c_r .

Proposition. The set of all linear combinations of v_1, v_2, \ldots, v_r is a linear subspace of V.

The proof is obvious.

Definition. The set of all linear combinations of v_1, v_2, \ldots, v_r is called the *linear span of* v_1, v_2, \ldots, v_r or may also be called the *linear subspace of* V generated by v_1, v_2, \ldots, v_r .

12 The Row and Column Spaces of a Matrix

Suppose M is an $m \times n$ matrix with columns $M_1, M_2, \ldots M_n$ rows $M^1, M^2, \ldots M^m$ (superscripts) **Definition.**

The column space of M is the linear span of M_1, M_2, \ldots, M_n .

The row space of M is the linear span of $M^1, M^2, \ldots M^m$.

Proposition. If $\mathbf{R}^n \xrightarrow{f_M} \mathbf{R}^m$ is the linear map given by $f_M(x) = Mx$, then the image of f_M is the column space of M.

Proof. The nature of matrix multiplication is such that

 $Mx = x_1M_1 + x_2M_2 + \dots + x_nM_n \quad .$