Math 220 Class Slides

http://math.albany.edu/pers/hammond/course/mat220/
February 21, 2008

1 Basic Concepts in Linear Algebra

- abstract vector space
- linear subspace of a vector space
- linear map
- translation in a vector space
- image or range of a map (linear or not)
- fiber or pre-image of a point under a map (linear or not)
- kernel or nullspace of a linear map
- affine subspace of a vector space

2 What is a Vector Space?

A vector space is a set equipped with an operation called vector addition and with a given meaning for "multiplication by a scalar" (multiplication of an element by a number) subject to the following axioms:

1. $(x+y)+z=x+(y+z)$
2. $x+y=y+x$
3. $x+\overrightarrow{0}=x$
4. $x+(-1) x=\overrightarrow{0}$
5. $(a b) \cdot x=a \cdot b \cdot x$
6. $a \cdot(x+y)=a \cdot x+a \cdot y$
7. $(a+b) \cdot x=a \cdot x+b \cdot x$
8. $1 \cdot x=x$
9. $0 \cdot x=\overrightarrow{0}$

3 Examples of Vector Spaces

- n-dimensional Cartesian space \mathbf{R}^{n}
- The plane in \mathbf{R}^{3} consisting of all points (x, y, z) satisfying the equation $x-3 y+2 z=0$
- The set of all quadratic polynomials in the variable t, i.e.,

$$
\left\{a t^{2}+b t+c\right\}
$$

- The set of all functions of the variable t having the form

$$
c_{1} \cos t+c_{2} \sin t
$$

- The set of all differentiable functions on \mathbf{R}
- The set of all continuous functions on the interval $0 \leq t \leq 1$
- The set of all solutions of the differential equation

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0
$$

4 What is a Linear Subspace?

A linear subspace of a vector space is a subset of the vector space having the following properties:

1. The sum of any two members of the subset is in the subset.
2. The element $\overrightarrow{0}$ of the vector space is in the subset.
3. The multiple of any element of the subset by any scalar is in the subset.

5 Examples of Subspaces

- Any line or plane through $\overrightarrow{0}=(0,0,0)$ in \mathbf{R}^{3} is a linear subspace of \mathbf{R}^{3}.
- The set of all functions of the variable t having the form

$$
c_{1} \cos t+c_{2} \sin t
$$

is a linear subspace of the set of all differentiable functions on \mathbf{R}.

6 What is a Linear Map?

A map $V \xrightarrow{\phi} W$ from a vector space V to a vector space W is a linear map (or linear transformation) if it preserves linear combinations. This means that it satisfies the following axioms:

1. $\phi(x+y)=\phi(x)+\phi(y)$ for all x, y in V
2. $\phi(a x)=a \phi(x)$ for all scalars a and all x in V

Equivalent: (preservation of linear combinations):

$$
\phi(a x+b y)=a \phi(x)+b \phi(y)
$$

for all scalars a and b and all elements x and y of V.

7 Examples of Linear Maps

- The map $\mathbf{R}^{n} \xrightarrow{f_{M}} \mathbf{R}^{m}$ given by an $m \times n$ matrix, i.e.,

$$
f_{M}(x)=M x
$$

is a linear map:

1. $M(x+y)=M x+M y$
2. $M(a x)=a M x$ (for every scalar a)

- Differentiation is linear:

1. $D(f+g)=D f+D g$
2. $D(c f)=c D f$ (for every constant c)

8 What is a Translation?

A map $V \xrightarrow{T} V$ from a vector space V to itself is called a translation if it has the form

$$
T(x)=x+v
$$

for some fixed v in V. The particular translation given by an element v of V is called translation by v.

9 Translations vs. Linear Maps

For any vector space V the translation T_{v} by v is linear if and only if $v=\overrightarrow{0}$. In this case it is the identity map from V to V

$$
T_{\overrightarrow{0}}(x)=x
$$

That is, for a given vector space V the only map from V to V that is both a linear map and a translation is the identity map.

10 Image of a Map

If $X \xrightarrow{f} Y$ is a map from a set X to a set Y the image or range of f is the subset of the target Y of f consisting of all y in Y for which there is at least one x in X such that $y=f(x)$.
Notation: $f(X)$ may be used to denote the image of f.
The image of a linear map between vector spaces is its image as a map between sets.
Theorem. If $V \xrightarrow{\phi} W$ is a linear map, then $\phi(V)$ is a linear subspace of W.

11 Fiber of a Map Over a Point

If $X \xrightarrow{f} Y$ is a map from a set X to a set Y and y is an element of Y, the fiber of f over y is the set $f^{-1}(y)$ consisting of all x in X such that $f(x)=y$. Tautology: The image of f is the set of all y in Y for which the fiber $f^{-1}(y)$ is not empty.

12 Kernel of a Linear Map

Definition. The kernel or nullspace of a linear map $V \xrightarrow{\phi} W$ is its fiber $\phi^{-1}\left(\overrightarrow{0}_{W}\right)$ over the origin of its target.

Re-stated: $\operatorname{Ker} \phi$ is the set of all v in V such that $\phi(v)=0$.
Notation: Ker ϕ may denote the kernel of ϕ.
Notes:

- The origin $\overrightarrow{0}=\overrightarrow{0}_{V}$ of V is always an element of the kernel of ϕ
- Sometimes, but certainly not always, the kernel of ϕ contains only $\overrightarrow{0}$.

Theorem. If $V \xrightarrow{\phi} W$ is a linear map, then $\operatorname{Ker} \phi$ is a linear subspace of V.

13 Significance of the Kernel

Every non-empty fiber of a linear map is a translate of its kernel.
Theorem. If $V \xrightarrow{\phi} W$ is a linear map and if v is a member of $\phi^{-1}(w)$, i.e., $\phi(v)=w$, then

$$
\phi^{-1}(w)=T_{v}(\operatorname{Ker} \phi)=v+\operatorname{Ker} \phi
$$

In other words, the most general x in V satisfying $\phi(x)=w$ has the form $x=v+z$ where z is the most general member of the kernel of ϕ.

14 What is an Affine Subspace?

An affine subspace of a vector space V is a subset of V that is a translate of a linear subspace.
Examples.

- Every line or plane in \mathbf{R}^{3}
- The set of solutions of any system of linear equations
- Every non-empty fiber of a linear map

Every linear subspace of a vector space is automatically an affine subspace.

15 Challenging Exercise

A non-empty subset S of a vector space is an affine subspace if and only if for all x and y in S and all scalars a and b with $a+b=1$ the element $a x+b y$ is a member of S.

16 To find a definition in a book

Try the index

17 Finding a definition in Wikipedia

Example: the term fiber
Google for: site:wikipedia.org + fiber
Find http://en.wikipedia.org/wiki/Fiber
Use disambiguation link at top of that page with option for "fiber (mathematics)" to find http://en.wikipedia.org/wiki/Fiber_\(mathematics\)

