Math 220 Class Slides

http://math.albany.edu/pers/hammond/course/mat220/
February 14, 2008

1 No class Tuesday the 19th

University in Recess

2 Assignment due February 21

Expect a quiz.
Read Matthews, §§ 8.5-8.7
Exercises:
Matthews, 186: $8-12$

3 Exercise No. 1

Where does the line L through $A=(3,-2,7)$ and $B=(13,3,-8)$ meet the plane $z=0$? The general point on L is

$$
\varphi(t)=A+t(B-A)=(1-t) A+t B=(3+10 t,-2+5 t, 7-15 t)
$$

as t varies in \mathbf{R}. It crosses the plane $z=0$ when $15 t=7$, i.e., at the point

$$
\varphi(7 / 15)=\left(\frac{23}{3}, \frac{1}{3}, 0\right)
$$

4 Exercise No. 4

$$
A=(2,3,-1) \quad B=(3,7,4)
$$

Want P on $A B$ so that

$$
P A / P B=2 / 5
$$

If $P=(1-t) A+t B$, then

$$
\frac{P A}{A B}=|t| \quad \frac{P B}{A B}=|1-t| \quad \frac{P A}{P B}=\left|\frac{t}{1-t}\right|
$$

Determine t such that

$$
\left|\frac{t}{1-t}\right|=\frac{2}{5} \quad \text { or } \quad \frac{t}{1-t}= \pm \frac{2}{5}
$$

Hence, $t=2 / 7$ or $t=-2 / 3$.

$$
P_{1}=(5 / 7)(2,3,-1)+(2 / 7)(3,7,4)=(16 / 7,29 / 7,3 / 7)
$$

or

$$
P_{2}=(5 / 3)(2,3,-1)-(2 / 3)(3,7,4)=(4 / 3,1 / 3,-13 / 3)
$$

5 Exercise No. 5

$$
A=(1,2,3) \quad B=(-2,2,0) \quad C=(4,-1,7)
$$

\mathcal{M} is the line through A parallel to $B C$

$$
\begin{gathered}
\mathcal{M}: \varphi(t)=(1,2,3)+t(6,-3,7)=(1+6 t, 2-3 t, 3+7 t) \\
E=(1,-1,8) \quad F=(10,-1,11)
\end{gathered}
$$

\mathcal{N} is the line through $E F$

$$
\mathcal{N}: \psi(u)=(1-u)(1,-1,8)+u(10,-1,11)=(1+9 u,-1,8+3 u)
$$

The intersection:

$$
\varphi(t)=\psi(u)
$$

one vector equation $=3$ scalar equations in t and u

6 Exercise No. 5: Solving the Equations

$$
\begin{aligned}
& \left\{\begin{array}{rll}
1+6 t & = & 1+9 u \\
2-3 t & = & -1 \\
3+7 t & = & 8+3 u
\end{array}\right. \\
& \left\{\begin{array}{rll}
6 t-9 u & = & 0 \\
-3 t & = & -3 \\
7 t-3 u & = & 5
\end{array}\right.
\end{aligned}
$$

$$
t=1 \quad \text { and } \quad u=\frac{2}{3}
$$

Point of intersection:

$$
\varphi(1)=\psi(2 / 3)=(7,-1,10)
$$

