Math 220 Class Slides

http://math.albany.edu/pers/hammond/course/mat220/
February 12, 2008

1 Assignment due February 14

Expect a quiz.
Read Matthews, §§ 8.1 - 8.4
Exercises:
Matthews, 185: $1-7$

2 Inverting a Matrix with Row Operations

1. If M has size $n \times n$, form the hyper-augmented matrix ($M I_{n}$) of size $n \times 2 n$, where I_{n} is the $n \times n$ identity matrix.
2. Perform row operations on $\left(M I_{n}\right)$ to bring its first n columns into reduced row echelon form.
3. IF the first n columns of the new matrix form I_{n}, then
(a) M is invertible.
(b) the last n columns of the new matrix form the inverse matrix Q.

3 Feb. 12 Assignment, No. 2

To find the inverse of the matrix

$$
\left(\begin{array}{rr}
1 & -1 \\
1 & 0
\end{array}\right)
$$

Form the 2×4 matrix

$$
\left(\begin{array}{rrrr}
1 & -1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

Then perform row operations

$$
\begin{gathered}
\left(\begin{array}{rrrr}
1 & -1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right) \\
\left(R_{1} \leftrightarrow R_{2}\right)\left(\begin{array}{rrrr}
1 & 0 & 0 & 1 \\
1 & -1 & 1 & 0
\end{array}\right) \\
\left(R_{2} \rightarrow R_{2}-R_{1}\right)\left(\begin{array}{rrrr}
1 & 0 & 0 & 1 \\
0 & -1 & 1 & -1
\end{array}\right) \\
\left(R_{2} \rightarrow-R_{2}\right)\left(\begin{array}{rrrr}
1 & 0 & 0 & 1 \\
0 & 1 & -1 & 1
\end{array}\right)
\end{gathered}
$$

Answer:

$$
\left(\begin{array}{rr}
0 & 1 \\
-1 & 1
\end{array}\right)
$$

4 Feb. 7 Assignment, No. 1

$$
\mathbf{R}^{4} \xrightarrow{f} \mathbf{R}^{3} \quad f(X)=f_{A}(X)=A X
$$

where

$$
A=\left(\begin{array}{rrrr}
2 & 3 & 1 & -4 \\
3 & -2 & -1 & 5 \\
5 & 1 & 0 & 1
\end{array}\right)
$$

- To handle all three tasks perform row operations on the augmented matrix

$$
\left(\begin{array}{rrrrr}
2 & 3 & 1 & -4 & y_{1} \\
3 & -2 & -1 & 5 & y_{2} \\
5 & 1 & 0 & 1 & y_{3}
\end{array}\right)
$$

- The reduced row echelon form:

$$
\left(\begin{array}{rrrrr}
1 & 0 & -1 / 13 & 7 / 13 & \left(2 y_{1}+3 y_{2}\right) / 13 \\
0 & 1 & 5 / 13 & -22 / 13 & \left(3 y_{1}-2 y_{2}\right) / 13 \\
0 & 0 & 0 & 0 & y_{3}-y_{1}-y_{2}
\end{array}\right)
$$

- There are no solutions unless $y_{3}=y_{1}+y_{2}$.
- When $y_{3}=y_{1}+y_{2}$, the transformed system of linear equations is:

$$
\begin{aligned}
x_{1}-\frac{1}{13} x_{3}+\frac{7}{13} x_{4} & =\frac{2 y_{1}+3 y_{2}}{13} \\
x_{2}+\frac{5}{13} x_{3}-\frac{22}{13} x_{4} & =\frac{3 y_{1}-2 y_{2}}{13}
\end{aligned}
$$

- x_{1} and x_{2} may be expressed as functions of x_{3} and x_{4}.
- The variables corresponding to pivot columns may be expressed as functions of the other variables.
- Every solution for the case when $Y=0$ has the form

$$
Z=s\left(\begin{array}{r}
1 / 13 \\
-5 / 13 \\
1 \\
0
\end{array}\right)+t\left(\begin{array}{r}
-7 / 13 \\
22 / 13 \\
0 \\
1
\end{array}\right)
$$

as the parameters s and t range over all real values - a "plane" in the 4-dimensional space \mathbf{R}^{4}.

- The set of Y for which $f(X)=Y$ has at least one solution - the image of f - is the plane in \mathbf{R}^{3} given by the equation $y_{1}+y_{2}-y_{3}=0$.
- Every solution W of

$$
A X=\left(\begin{array}{r}
4 \\
-1 \\
3
\end{array}\right)
$$

has the form

$$
W=Z+\left(\begin{array}{r}
5 / 13 \\
14 / 13 \\
0 \\
0
\end{array}\right)
$$

where Z is given by the formula above.

5 Feb. 12 Assignment, No. 1

Let $R(s, t)$ be the function from \mathbf{R}^{2} to \mathbf{R}^{3} defined by

$$
R(s, t)=(s+2 t,-2 s-t,-2 s+2 t)
$$

1. Find equation(s) that characterize the set S of all points (x, y, z) in \mathbf{R}^{3} that arise as $R(s, t)$ for at least one pair (s, t).
2. What kind of subset of \mathbf{R}^{3} is S ?

6 Assgt., No. 1: Generic Augmented Matrix

$$
\left(\begin{array}{rrr}
1 & 2 & x \\
-2 & -1 & y \\
-2 & 2 & z
\end{array}\right)
$$

Technique:

1. Perform row operations
2. Bring the coefficient portion to RREF
3. Form the resulting system
4. Apply common sense

7 Assgt., No. 1: Row Operations

$$
\begin{gathered}
\left(\begin{array}{rrr}
1 & 2 & x \\
-2 & -1 & y \\
-2 & 2 & z
\end{array}\right) \\
\left(R_{2} \rightarrow R_{2}+2 R_{1}\right)\left(\begin{array}{rrr}
1 & 2 & x \\
0 & 3 & 2 x+y \\
-2 & 2 & z
\end{array}\right) \\
\left(R_{3} \rightarrow R_{3}+2 R_{1}\right)\left(\begin{array}{rrr}
1 & 2 & x \\
0 & 3 & 2 x+y \\
0 & 6 & 2 x+z
\end{array}\right) \\
\left(R_{3} \rightarrow R_{3}-2 R_{2}\right)\left(\begin{array}{rrr}
1 & 2 & x \\
0 & 3 & 2 x+y \\
0 & 0 & -2 x-2 y+z
\end{array}\right)
\end{gathered}
$$

(Now in row echelon form, but not reduced row echelon form)

$$
\begin{gathered}
\left(R_{2} \rightarrow \frac{1}{3} R_{2}\right)\left(\begin{array}{ccr}
1 & 2 & x \\
0 & 1 & (2 x+y) / 3 \\
0 & 0 & z-2 x-2 y
\end{array}\right) \\
\left(R_{1} \rightarrow R_{1}-2 R_{2}\right)\left(\begin{array}{rrr}
1 & 0 & -(x+2 y) / 3 \\
0 & 1 & (2 x+y) / 3 \\
0 & 0 & z-2 x-2 y
\end{array}\right)
\end{gathered}
$$

8 Assgt., No 1: Application

Remember that s and t are the unknowns, while x, y, and z are "on the right".
The resulting linear system:

$$
\begin{aligned}
s & =-\frac{x+2 y}{3} \\
t & =\frac{2 x+y}{3} \\
0 & =z-2 x-2 y
\end{aligned}
$$

- s and t can be expressed in terms of x, y, and z
- No solution unless $z=2 x+2 y$
- S is the plane in \mathbf{R}^{3} of all points satisfying the equation $z=2 x+2 y$

